
Symbol Table Loading From Copybooks

CML00039-01

Code Magus Limited (England reg. no. 4024745)
Number 6, 69 Woodstock Road

Oxford, OX2 6EY, United Kingdom
www.codemagus.com

Copyright c⃝ 2014 by Code Magus Limited
All rights reserved

December 15, 2020

CONTENTS CONTENTS

Contents
1 Usage 2

1.1 Initialising the interface . 2
1.2 Locating symbols . 4

2 Printing the contents of buffers 9

3 Associating attributes withe data items 9
3.1 Disconnecting and cleanup . 10
3.2 Complete example . 11

4 Extensions 17

Code Magus Limited 1 CML00039-01

1 USAGE

This document describes a library and its interface that can be used to parse copybooks
and create symbol table data structures suitable for fast look ups of symbol attributes.

At present only a C interface is supported and only COBOL copybooks can be parsed
into the symbol table data structures. The portions of COBOL that can appear in the
copybooks are only the descriptions of the data items. This means that copybooks with,
for example, COBOL FD entries in them are not accepted. The targeted level of COBOL
is ANSI-85.

1 Usage

In order to use the library, the header file symbols.h should be included in the pro-
gram. This header defines a number of structures that describe symbol table entries.
Also defined are a number of prototypes that are used to create symbol table data struc-
tures and to perform look up requests for symbols by name. Duplicate symbols are
permitted, but symbol look up must always be qualified by the 01-level name or the
copybook member name (the scope of the name). Duplicates, either within an 01-level
or within a copybook member cannot be located, only the last defined entry can be
located and this entry displaces all the previous entries within the same scope.

The header file symbols.h, includes the required data structures required to describe
the picture clauses and the hash table data structures required to locate symbols.

1.1 Initialising the interface

When “opening” a symbol table data structure using the symbols open function, the
path or file mask of where to find the copybooks to be processed is included in the initial
call:

symbols_t *symbols_open(char *file mask, unsigned char flags);

When the structure is opened, a file name mask is supplied. This is either the name of
the file which should be processed and it is assumed that this file will contain all the
copy books whose symbols must be made available. This is indicated by the default
setting of the flags value (zero). Alternatively, the file name mask may contain an em-
bedded ”%s” sequence. The presence of this sequence is indicated by setting the bit
SYMFL MASKING on in the flags. In this case, whenever a structure is not found, an
attempt will be made to process the file name indicated by the structure name by in-
serting the name of the structure in the string (via sprintf). If this does not result in the
the structure being made available or if the symbol is subsequently found not to be a
member of the structure, then a NULL is returned.

Code Magus Limited 2 CML00039-01

1.1 Initialising the interface 1 USAGE

The SYMFL MASKING option is available only when the SYMFL LAZY option is also
selected. When this option is selected, the symbols are made available only when de-
manded. In this case the structure should be the name that completes the file name of
SYMFL MASKING is used. This name will be treated as an alias of the first field found
in the file.

If the SYMFL MASKING option is not used but SYMFL LAZY is indicated then the file
name passed on the symbols open call will be processed on the first symbols lookup
call and the SYMFL LAZY flag will be switched off.

If the SYMFL REMDASH option is used, then a flag is set to inform the lexical analysis all
dashes within identifiers should be converted to the under-score character. This is done
so that the name can be used in environments other than COBOL. In such environments
the dash would be confused with the arithmetic operator for subtraction.

If the SYMFL EBCDIC or SYMFL ASCII option is used, then the default character
set which is assigned as the representing character set of an item is overridden. The
default value is chosen when a data item which is represented as characters does not
have an explicitly assigned collating sequence. The normal value of the default is the
character set of the computer on which the library is being used. You should not use the
SYMFL EBCDIC flag together with the SYMFL ASCII flag.

If the SYMFL ENDSMALL or SYMFL ENDBIG option is used, then the default endian
of binary items is overridden by the corresponding value. The default value is chosen
when a data item which is represented as a binary data item does not have an explicitly
assigned endianness. The normal value of the default endianness is that of the computer
on which the library is being used. You should not use the SYMFL ENDSMALL and
SYMFL ENDBIG flags together.

If the SYMFL NORAWBUF option is used, then a flag is set then the buffer print routines
ignore portions of a buffer which were not selected as being formatted because the
detection of the layout of the buffer. If no record matches a buffer, then the entire buffer
is printed as a hexadecimal dump regardless. This option refers to those portions of a
selected buffer which are not chosen. For example, because of no applicable overlay.

If the SYMFL DATAONLY option is used, then a level indicator is set for the lexical
analyser which forces it to interpret reserved words or keywords that are not required
for data item definition to be recognised as identifiers. This is in addition to the use of
the colon character in front of a symbol to force it to be interpreted as an identifier.

#include "symbols.h"

symbols_t *symbols;
int flags;

flags = SYMFL_LAZY|SYMFL_MASKING;
symbols = symbols_open("/home/stephen/copybooks/%s",flags);

Code Magus Limited 3 CML00039-01

1.2 Locating symbols 1 USAGE

The same code works on OS/390 where copybooks are stored in PDSs or PDSEs. The
only changes required would be to the file name mask:

symbols = symbols_open("‘XXXXXXXX.YY.COPY(%s)’",flags);

1.2 Locating symbols

Once a symbol table structure has been opened, symbols can be located using the
symbols lookup function:

data_item_t *symbols_lookup(symbols_t *symbols,
unsigned char *structure, unsigned char *fieldname);

The structure parameter is value returned from the corresponding symbols open
function call (many symbol table structures can be open at the same time). The structure
parameter is the qualifying name. This qualifying name is either the copybook name or
the name of the 01-level (in this case, the copybook must have already been parsed).

The symbols lookup function call returns the address of the symbol table entry for
the qualified symbol or a NULL should the process fail to parse a required copybook or
the symbol is not found in the copybook.

data_item_t *field;
char *structure;
char *fieldname;

field = symbols_lookup(symbols,structure,fieldname);

The pointer returned form the symbols lookup can be dereferenced from code out-
side the library. The following attributes of the symbol are made available in this manner
(see the symbols t in actions.h):

Code Magus Limited 4 CML00039-01

1.2 Locating symbols 1 USAGE

attribute description
*name name of data item
level data item level number
llevel data item logical level number
offset data item offset
place value from OFFSET phrase
length number of bytes of element
storage number of bytes occupied
cover field is a covering field

zero for elementary field, one for group item
*type type information
*type see type info t in picture.h
sync indicates synchronised item
usage final usage assigned
usage specified from usage clause
catagory bits indicating abstract type

CATAGORY BITS 0x1f
ALPHA 0x01
NUMERIC 0x02
EDIT 0x04
NUMERIC EDIT (NUMERIC|EDIT)
ALPHANUMERIC (ALPHA|NUMERIC)
ALPHANUMERIC EDIT (ALPHA|NUMERIC|EDIT)
DBCS 0x08
FLOAT 0x10

*redefines possible item redefined
sign bits for sign clause

zero for no sign clause specified
0x01 bit for sign leading
0x02 bit for sign trailing
0x12 bit for sign separate

blank when zero blank when zero clause used
justified justified clause used
*value value clause specified

see value t in actions.h
*conditions list of 88-level items

these are also data item t structures
iand are chained off the link field

*occurs details from occurs clause
see occurs t in actions.h

*rename details from rename clause
see rename t in actions.h

hidden hidden by HIDDEN or HIDE phrase
chilren count of children from this field
pack function to convert display to value

see item pack t in actions.h
unpack function to convert value to display

see item unpack t in actions.h
*attributes attribute value pairs

see the hash table library for interface
user field int field for library user use
user hook void * field for library user use

Code Magus Limited 5 CML00039-01

1.2 Locating symbols 1 USAGE

If the symbol is indexed (the occurs attribute will refer to a structure if the OCCURS
clause was used in the definition of the data item and/or the data item is nested within
group level items defined with OCCURS clauses), then the offset attribute refers to first
occurrence of the item (possibly within the first occurrence within a covering occurring
field, etc.). There are two functions which take a set of indices and a symbol table entry
returned from symbols lookup and return the actual offset of the indexed field:

int symbols_vindex(data_item_t *symbol, int levels, ...);
int symbols_index(data_item_t *symbol, int levels, int *index);

The only difference between the two functions is that in the first (symbols vindex)
expects all the index values to be passed as parameters and the second (symbols index)
expects all the indexes passed with a single parameter. This parameter is an array con-
taining all the index values. The second is more useful as it does not require the hard-
coding of the number of indexes:

int offset;
int levels;
int index[20];

offset = symbols_index(field,levels,index);

If the number of indexes do not match the symbol (and the symbols containing the
symbol), then the function returns −1 as the offset (zero is a valid offset—it is the
offset of the first item in an 01-level or the offset of the 01-level symbol itself). If
the SYMFL VERBOSE flag is set when the symbol table structure was created, then an
error message will also be printed. The verbose option can also be selected from shell
by defining the SYMFL VERBOSE as an environment variable and setting the value
appropriately:

[stephen@nomad symbols]$ export SYMFL_VERBOSE=1

The data structure returned from the symbols library shown in Figure 1 can be nav-
igated in various ways. This is useful, for example, for iterating over the fields of a
copybook.

The symbols t data structure returned from the symbols open comprises of a num-
ber of linked lists and trees. The fields head and tail form a linked list of all the fields
defined in the copybook. The fields can be iterated over by following the next field
of the data item t elements. The following code fragment shows an iteration over
all the fields defined in a copybook regardless of which record the field belongs to and
regardless of the relationship between the fields:

for (parent = symbols->head; parent; parent = parent->next)
if (parent->level == 01 || lengths > 1)

{
if (parent->level == 01) adjust = 0;

Code Magus Limited 6 CML00039-01

1.2 Locating symbols 1 USAGE

data−item−1−1 data−item−1−4

record−1

data−item−2−1

symbols

record−2

data−item−2−4

Figure 1: Simplified tree view of the symbols data structure

if (parent->offset+adjust != parent->place)
{
misalign = 1;
adjust -= parent->offset+adjust - parent->place;
}

else
misalign = 0;

if (parent->name[0] == ’-’)
printf("FILLER %d %d %d %d %d\n",parent->length,

parent->storage,parent->offset,parent->place,
misalign);

else
printf("%s %d %d %d %d %d\n",parent->name,

parent->length,parent->storage,parent->offset,
parent->place,misalign);

}

The symbols t fields record head and record tail form a linked list of record t
structures. The records can be iterated over by following the link field in the record t
structure. Each of these data structures defines a grouping of the fields defined in a sin-
gle 01-level or 77-level item. The following code fragment shows an iteration over all
the records that might have been defined in a single copybook:

for (record = symbols->record_head; record; record = record->link)
{
record_map = record;
for (field = record->head; field; field = field->link)

Code Magus Limited 7 CML00039-01

1.2 Locating symbols 1 USAGE

{
if (record->cover[field->offset] == 1

&& !symbols_eval_value(field,length,buffer))
{
record_map = NULL;
break;
}

}
if (record_map) break;
}

The record t structure in turn contains a linked list of the fields under the 01-level
record. This linked list is formed by the fields head and tail in the record t
structure. When iterating over the fields in a record t structure, the link field should
be followed. The code fragment above shows an example of iterating over all the fields
defined in a 01-level record.

The relationship between the fields of a single record also forms a tree hierarchy. This
tree is also represented in the data structure at the record level. Because a node in the
tree (i.e. a field) can have any number of children, the tree is represented by a child-peer
data structure. In this data structure the first child of a node is pointed to by the child
field. The the next sibling of this child is pointed to by the previous child itself (and
not the parent), and so on. This allows for an arbitrary tree structure without wasting
space and admits a simple recursive navigation for iterating over all of the field nodes
in a record. The following code fragment shows an example of a recursive traversal of
the tree data structure:

/* Function symbols_has_values() evaluates whether or not a subtree has

* value clauses.

*/

int symbols_has_values(data_item_t *field)
{
data_item_t *child;

if (field->cover)
{
for (child = field->child; child; child = child->peer)

if (symbols_has_values(child)) return 1;
return 0;
}

if (field->value || field->conditions) return 1;

return 0;

Code Magus Limited 8 CML00039-01

3 ASSOCIATING ATTRIBUTES WITHE DATA ITEMS

} /* symbols_has_values */

2 Printing the contents of buffers

The symbols library can also be used to print the contents of a buffer in hand using a
collection of records (01-level items) loaded from a copybook. There are a number of
exported functions which support buffer printing.

Function symbols printbufwill format a buffer using a supplied record t struc-
ture. The contents of the buffer will be printed according to the definition of the fields
described in the supplied record. The prototype for function symbols printbuf is:

void symbols_printbuf(symbols_t *symbols, record_t *record,
int len, unsigned char *buffer);

Function symbols formatbuf works similarly except that it is not given the record
which should be used to format the buffer. Instead, the buffer contents are examined and
compared with the contents of any value clauses present. Both the value clauses on
items at levels 01 to 49 are examined and the value clauses on 88-level items. The
prototype for function symbols formatbuf is:

void symbols_formatbuf(symbols_t *symbols, int length, unsigned char *buffer);

When considering which record to choose, only the value clauses associated withe
items that describe an unambiguous portions of the buffer are taken into account. For
example, if there were a value clause on an item which was a redefinition of a portion
of the record, then the value clause would not be taken into account when considering
the suitability of the record for describing the buffer in hand. All unambiguous value
clauses on field items must match the inorder for the record to be chosen as a layout.
Where there is a list of value clauses (for example a sequence of 88-level items or a
list of values in the definition of a single data item), on one of the values needs to match
in order to consider that that field has matched the buffer contents.

The function symbols choosemap is used to decide on a record for a given buffer.
This function is also exported and can be used independently of the use described here.
The prototype for this function is:

record_t *symbols_choosemap(symbols_t *symbols, int length,
unsigned char *buffer);

3 Associating attributes withe data items

There may be a case for associating arbitrary attributes with a given data item. This
can be done as an appropriately placed embedded comment in the copybook. These at-

Code Magus Limited 9 CML00039-01

3.1 Disconnecting and cleanup3 ASSOCIATING ATTRIBUTES WITHE DATA ITEMS

tributes take the form of name-value pairs. Both the name and the value are represented
as quoted strings. In the following example, the attribute ENCRYPTED is associated
with a data item called ACCOUNT-NUMBER and is given a value of DES-OP-KEY:

0000000001111111111
1234567890123456789

05 ACCOUNT-NUMBER PIC X(19).

*attribute set ACCOUNT-NUMBER["ENCRYPTED"] = "DES-OP-KEY".

The values of attributes can be set and retrieved programmatically as well. This is ac-
complished by the functions symbols set attribute and symbols get attribute,
respectively. These functions have the following prototypes:

char *symbols_get_attribute(data_item_t *field, char *attribute);
char *symbols_set_attribute(data_item_t *field, char *attribute, char *value);

Functions to route to the corresponding pack and unpack routines. These routines are
determined by the data items type and are set at the time when the symbol table is cre-
ated. The functions return zero if the translation occurred correctly, else -1 is returned.

The function symbols pack converts the item in the buffer described by the field into
a string and the function symbols unpack takes a string and converts the item to
the type described by the field and stores it into the buffer. For some of the conversion
either the character set encoding or the endian of the binary items need to be taken into
account. In these cases the attributes of the local machine are used unless they have been
specified on the symbols open call; or unless they have been explicitly provided at
the field or group or covering field level.

int symbols_pack(data_item_t *field, unsigned char *buf,
unsigned char *value, int levels, int *index);

int symbols_unpack(data_item_t *field, unsigned char *buf,
unsigned char *value, int levels, int *index);

3.1 Disconnecting and cleanup

Once the interface is no longer needed, the symbols close function can be used to
free the data structures occupied by the symbol tables:

int symbols_close(symbols_t *symbols);

The symbols argument is the symbol table handle returned from the symbols open
function when the interface was initialised.

Code Magus Limited 10 CML00039-01

3.2 Complete example 3 ASSOCIATING ATTRIBUTES WITHE DATA ITEMS

3.2 Complete example

The following C program demonstrates the use of the API. This sample, testprog.c
is part of the source distribution and is used for testing the C interface.

/*
* File: testprog.c

*
* This program is a sample using the symbols library. The program

* prompts for qualified field names. The copybooks corresponding the

* the symbols are lazily loaded. The path to the copybooks is hard-

* coded in the program.

*
* Author: Stephen Donaldson.

*/

/*
* $Author: hayward $

* $Date: 2009/11/30 13:47:15 $

* $Id: symref.tex,v 1.9 2009/11/30 13:47:15 hayward Exp $

* $Name: $

* $Revision: 1.9 $

* $State: Exp $

*
* $Log: symref.tex,v $

* Revision 1.9 2009/11/30 13:47:15 hayward

* Change to new title page.

*
* Revision 1.8 2008/12/18 08:59:36 hayward

* Change to new header format.

*
* Revision 1.7 2004/10/19 11:45:12 stephen

* Allow F and FIL as abbreviations of FILLER

*
* Revision 1.6 2002/12/26 10:45:23 stephen

* Add C++ wrapper and document pack and unpack functions

*
* Revision 1.5 2002/08/15 20:31:49 stephen

* Maintenance June/July/Aug 2002 JHB

*
* Revision 1.12 2002/06/06 05:45:39 stephen

* Include memdebug.h for possible memory debug build

*
* Revision 1.11 2002/05/29 18:50:15 stephen

* Resource cleanup on close and maintain attributes for data items

*

Code Magus Limited 11 CML00039-01

3.2 Complete example 3 ASSOCIATING ATTRIBUTES WITHE DATA ITEMS

* Revision 1.10 2002/01/13 15:08:21 cvs

* Changes to support metadata processing

*
* Revision 1.9 2001/06/30 10:01:39 stephen

* Fix flag dependency and build lib archive

*
* Revision 1.8 2000/12/27 10:08:29 stephen

* Add additional options for testing

*
* Revision 1.7 2000/12/26 15:57:52 stephen

* Cleanup and introduce V1R0M0 tag

*
* Revision 1.6 2000/12/20 07:54:52 stephen

* Option to convert dashes to underscores

*
* Revision 1.5 2000/12/19 17:26:12 stephen

* Changes to use storage and occurs

*
* Revision 1.4 2000/12/19 13:06:17 stephen

* Definable symbol LAZY_OPEN for lazy open

*
* Revision 1.3 2000/12/15 15:12:45 stephen

* Enlarge default hash table size. Hash table malloc

* fixed (should be size times sizeof pointer---and not size

* times size of structure).

*
* The sample testprog.c loads all the books in a non-lazy

* fashion from allbooks. (Just for testing.)

*
* Revision 1.2 2000/12/14 20:08:27 stephen

* Memory debugging header added files changed to unconditionnaly include

* the header (memdebug.h)

*
* Cleanup code.

*
* If the structure name (member containing copybooks) and the first field

* name are different then add all the symbols defined in the member (from

* all the records) under a single structure name (the name of the member).

*
* Revision 1.1.1.1 2000/12/14 13:25:14 stephen

* Add file for symbols module

*
*
*/

static char *cvs =

Code Magus Limited 12 CML00039-01

3.2 Complete example 3 ASSOCIATING ATTRIBUTES WITHE DATA ITEMS

"$Id: symref.tex,v 1.9 2009/11/30 13:47:15 hayward Exp $";

#include <stdlib.h>
#include <stdio.h>
#include <string.h>

#include "memdebug.h"
#include "copynote.h"
#include "symbols.h"

int main(int argc, char *argv[])
{
symbols_t *symbols;
char fullname[200];
char *structure;
char *fieldname;
char *indices;
char *indstart;
char *delim;
data_item_t *field;
int index[20];
int levels;
int offset;
int flags;
char *type;

COPYNOTE;

ifdef LAZY_OPEN

flags = SYMFL_LAZY|SYMFL_MASKING|SYMFL_VERBOSE;
ifdef USE_DASHES

flags |= SYMFL_REMDASH;
endif /* USE_DASHES */

ifdef ASK_PATH_MASK
printf("Enter path mask: ");
fgets(fullname,sizeof(fullname),stdin);

delim = strchr(fullname,’\n’);
if (delim) *delim = 0;
delim = strchr(fullname,’ ’);
if (delim) *delim = 0;

symbols = symbols_open(fullname,flags);
else /* !ASK_PATH_MASK */

Code Magus Limited 13 CML00039-01

3.2 Complete example 3 ASSOCIATING ATTRIBUTES WITHE DATA ITEMS

symbols = symbols_open("/home/stephen/nedcor/copybooks/%s",flags);
endif /* ASK_PATH_MASK */

else /* !LAZY_OPEN */
symbols = symbols_open("/home/stephen/nedcor/copybooks/allbooks",0);

endif /* LAZY_OPEN */

if (!symbols)
{
fprintf(stderr,"Failed to create symbol table structures.\n");
exit(0);
}

while (1)
{
printf("Fully qualified Symbol: ");
delim = fgets(fullname,sizeof(fullname),stdin);
if (!delim || fullname[0] == ’.’) break;

delim = strchr(fullname,’\n’);
if (delim) *delim = 0;
delim = strchr(fullname,’ ’);
if (delim) *delim = 0;

delim = strchr(fullname,’.’);
if (!delim)

{
fprintf(stderr,"Field qualification error in %s\n",fullname);
continue;
}

structure = fullname;

*delim = 0;
fieldname = delim+1;

delim = strchr(fieldname,’(’);
if (delim)

{

*delim = 0;
indices = delim+1;
}

else
indices = 0;

indstart = indices;
for (levels = 0; indices && strlen(indices);)

Code Magus Limited 14 CML00039-01

3.2 Complete example 3 ASSOCIATING ATTRIBUTES WITHE DATA ITEMS

{
if (sscanf(indices,"%d",&index[levels]) == 1)

{
levels++;
for (; strlen(indices) && isdigit(*indices); indices++);
for (; strlen(indices) && ispunct(*indices); indices++);
}

}

field = symbols_lookup(symbols,structure,fieldname);

if (field)
{
print_data_item(stdout,field);

offset = symbols_index(field,levels,index);

if (indstart && offset >= 0)
printf(" %s (%s has offset %d.\n",field->name,indstart,offset);

type = symbols_get_attribute(field,"TYPE");
if (type)

printf("\n Symbol has override type of %s\n",type);

printf("\n");
}

} /* while */

symbols_close(symbols);
exit(0);

} /* main */

Assume that the directory /home/stephen/copybooks contains the following copy-
book under the file name XX:

000080 01 AAAAAAAA.
000090 05 BBBBBBBB PIC X(88).
000100 05 CCCCCCCC OCCURS 200.

10 DDDDDDDD OCCURS 2.
15 EEEEEEEE OCCURS 10 PIC X(10).

05 WWWWWWWW.
000090 15 FFFFFFFF PIC X.
000090 15 GGGGGGGG PIC X.

The program testprog can be used to query the symbols in the copybooks in the

Code Magus Limited 15 CML00039-01

3.2 Complete example 3 ASSOCIATING ATTRIBUTES WITHE DATA ITEMS

directory /home/stephen/copybooks:

[stephen@nomad symbols]$./testprog
[./testprog] $Id: symref.tex,v 1.9 2009/11/30 13:47:15 hayward Exp $
Copyright (c) 2000 by Stephen Donaldson [stephen@codemagus.com].
Fully qualified Symbol: XX.FFFFFFFF

FFFFFFFF
level = 15/4, offset = 40088, length = 1, cover = 0
sync = 0, usage = display, sign = 0, bwz = 0
storage = 1, occurances = 1
Type info:

Pic = X, Cat type = alpha numeric[03],
usage_allowed = default, length = 1

Fully qualified Symbol: AAAAAAAA.EEEEEEEE

EEEEEEEE
level = 15/4, offset = 88, length = 10, cover = 0
sync = 0, usage = display, sign = 0, bwz = 0
storage = 100, occurances = 10
Type info:

Pic = X(10), Cat type = alpha numeric[03],
usage_allowed = default, length = 10

Fully qualified Symbol: AAAAAAAA.EEEEEEEE(190,2,6)

EEEEEEEE
level = 15/4, offset = 88, length = 10, cover = 0
sync = 0, usage = display, sign = 0, bwz = 0
storage = 100, occurances = 10
Type info:

Pic = X(10), Cat type = alpha numeric[03],
usage_allowed = default, length = 10

EEEEEEEE (190,2,6) has offset 38038.

Fully qualified Symbol: AAAAAAAA.GGGGGGGG

GGGGGGGG
level = 15/4, offset = 40089, length = 1, cover = 0
sync = 0, usage = display, sign = 0, bwz = 0
storage = 1, occurances = 1
Type info:

Pic = X, Cat type = alpha numeric[03],
usage_allowed = default, length = 1

Fully qualified Symbol: AAAAAAAA.EEEEEEEE(200,2,10)

Code Magus Limited 16 CML00039-01

4 EXTENSIONS

EEEEEEEE
level = 15/4, offset = 88, length = 10, cover = 0
sync = 0, usage = display, sign = 0, bwz = 0
storage = 100, occurances = 10
Type info:

Pic = X(10), Cat type = alpha numeric[03],
usage_allowed = default, length = 10

EEEEEEEE (200,2,10) has offset 40078.

Fully qualified Symbol: AAAAAAAA.WWWWWWWW

WWWWWWWW
level = 5/2, offset = 40088, length = 2, cover = 1
sync = 0, usage = display, sign = 0, bwz = 0
storage = 2, occurances = 1
Type info:

Fully qualified Symbol: .
[stephen@nomad symbols]$

Notice that after the use of the member name as the qualifying name (XX) the name of
the 01-level data item becomes available as the qualifying name.

4 Extensions

one important omission needs to be added as soon as possible:

• the SYNCHRONIZED clause does not adjust offsets so that the items are aligned
on the necessary boundaries.

Code Magus Limited 17 CML00039-01

	1 Usage
	1.1 Initialising the interface
	1.2 Locating symbols

	2 Printing the contents of buffers
	3 Associating attributes withe data items
	3.1 Disconnecting and cleanup
	3.2 Complete example

	4 Extensions

