QCodeMagus

strucenv: Structured Environment Variables, User
Guide and API Reference Version 1

CMLO00066-01

Code Magus Limited (England reg. no. 4024745)
Number 6, 69 Woodstock Road
Oxford, OX2 6EY, United Kingdom
www.codemagus .com
Copyright (©) 2014 by Code Magus Limited
All rights reserved

o COdeMag us December 15, 2020

CONTENTS CONTENTS

Contents
1 Introduction 2
L1 Overview e e 2
1.2 SEVFormat e 2
2 SEV Configuration File 3
2.1 Namingand Locating 3
22 Syntax e 3
2.2.1 ConfigurationFile 3
2.2.2 Configurationheader 3
2.2.3 Configurationbody 4
224 Setstatement e e 4
2.2.5 Pathstatement 4
2.2.6 Module statement 5
2277 Entrystatement e 5
228 Valuetypes e 5
229 Stringtypeo 6
3 Indirect Retrieval Method 7
3.1 Application Source Code and Linking 7
3.2 Resolvingareference 7
4 Direct Retrieval Method 8
4.1 Application Source Code and Linking 8
4.2 ResolvingaReference 8
421 SynopsiS e e e e e e e 8
422 ReturnValue 8
43 ClosingaSEV Store 9
431 Synopsis e 9
432 ReturnValue, 9
4.4 Obtaining Error Information 9
4.4.1 SynopsisSl e 9
4472 ReturnValue, 9
5 applparms Based Store 10
5.1 Configuration Details 10
5.2 Example SEV ConfigurationFile 10
5.3 Example applparms ConfigurationFile 11
A strucenv Header File 13

Code Magus Limited 1 CML00066-01

1 INTRODUCTION

1 Introduction

1.1 Overview

The Code Magus Limited st rucenv library provides an interface for programs to
retrieve the value of a structured environment variable (SEV). A SEV is an environment
variable that resolves to a value obtained from a specific cache or store of values and is
defined by a configuration file. The structure of the name of the SEV identifies it as a
SEV; names the store; and lastly names the actual variable (see section 1.2 on page 2).

It is most usually called indirectly, as explained in section 4 on page 8, where an ap-
plication uses and links to the Code Magus Limited osmods library and then calls
the generic function getenv () to resolve the value of either a system or a structured
environment variable with out having to know which it is dealing with.

However, the st rucenv library may be called directly, as explained in section 4 on
page 8, where in some circumstances it may not be possible to call the osmods library.

This manual also details the available stores and retrieval modules that are currently
available. These are:

1. Application Parameter Store. This store uses the applparms [1] library to re-
trieve the value of a structured environment variable as explained in section 5 on
page 10.

1.2 SEV Format

The format of a structured environment variable reference or name is as follows:
S{SEV:storename:variablename}
where

e SEV - This literal with the trailing colon ‘:’ identifies the environment variable
reference as a structured environment variable.

e storename - This identifier names the structured environment variable store. It re-
solves to a configuration file (see section 2.1 on page 3) that defines the attributes
of the store.

e variablename - This identifier names the variable that is required to be resolved
from the store.

For example, an environment variable reference of $ { SEV: runparms:run_date}
is a structured environment variable reference to the variable run_date within the
runparms store.

Code Magus Limited 2 CML00066-01

2 SEV CONFIGURATION FILE

2 SEYV Configuration File

2.1 Naming and Locating

The system environment variable CODEMAGUS_SEVPATH defines a template to which
the store name, folded to upper case, is applied to generate the fully qualified name of
the store configuration file. The template is a path name and must include a ‘$s’ as a
substitution place holder for the name of the structured environment variable store. If
the environment variable is blank or not defined then the default template is ‘$s.sev’.

For example if a structured environment variable reference is SEV:cmlstore :myvar
and the value of the environment variable CODEMAGUS_SEVPATH is
‘c:\\CodeMagus\\Catalogs\\%s.sev’

then the store configuration file name will be
‘c:\\CodeMagus\\Catalogs\\CMLSTORE. sev’

2.2 Syntax
The structured environment variable configuration file identifies the store and the mod-

ule and its entry point that is loaded and called to resolve a structured environment
variable reference.

2.2.1 Configuration File

The configuration file is made up of a header and a body portion and is terminated with
the end keyword and a full stop.

SEVConfiguration

— | SEVHeader |5 SEVBody

2.2.2 Configuration header

The header names the configuration.

SEVHeader

—»Cenvironmeng—» Identifier »@—»

Code Magus Limited 3 CML00066-01

2.2 Syntax 2 SEV CONFIGURATION FILE

2.2.3 Configuration body

The body of the configuration is made of various statements as listed in the syntax
diagram and explained below.

SEVBody

— SEVBodyStatements —
SEVBodyStatements

j SEVBodyStatement j
SEVBodyStatements (—~ SEVBodyStatement

SEVBodyStatement

SetStatement

PathStatement

ModuleStatement

EntryStatement

2.2.4 Set statement

This statement sets a system environment variable to Value for use later in the config-
uration file or in the interface module.

SetStatement

Identifier »@—» Value »@—»

2.2.5 Path statement

This statement identifies the path to the store interface module.

PathStatement

({5

Examples are:

path "c:\CodeMagus\bin\"

Code Magus Limited 4 CML00066-01

2.2 Syntax 2 SEV CONFIGURATION FILE

2.2.6 Module statement

This statement identifies the module that is the interface to the store. It implements all
the methods required for accessing the store of variables. This is a DLL or shared object
program that adheres to calling conventions and function names as shown in section 4
on page 8.

ModuleStatement

L |-

Examples are:

module "cmlapsem.dll"
or...

module ${CMLAPSEM_MODULE}
2.2.7 Entry statement
This statement identifies the entry point in the store interface module. The entry point is

usually an identifier but may be a string (especially if the name is held in an environment
variable reference.

EntryStatement

LBy |

EntryPoint

String

Examples are:

entry cmlapsem_entry
or...

entry ${CMLAPSEM_ENTRY}

2.2.8 Value types

A Value can be either a St ring or a Number.

Code Magus Limited 5 CML00066-01

2.2 Syntax 2 SEV CONFIGURATION FILE

Value
TNUMBER

2.2.9 String type

The String type is a concatenation of one or more Strings.

String

String — TSTRING

Code Magus Limited 6 CML00066-01

3 INDIRECT RETRIEVAL METHOD

3 Indirect Retrieval Method

The indirect method offers the application developer the ability to use structured envi-
ronment variables with minimal or no coding changes.

3.1 Application Source Code and Linking

The application must include the header file osmods . h and link to the osmods and
supporting libraries for the relevant platform. Examples of the link statements are:

For Linux and Unix:
-L path_to_libraries —-losmods —-lenvvar -lstrucenv -lhashtab -1dl
For Windows using Microsoft Visual C:

/LIBPATH path_to_libraries osmods.lib envvar.lib strucenv.lib hashtab.lib

3.2 Resolving a reference

The inclusion of osmods into an application means that the function getenv () is
mapped to the osmods library. The application need only call the getenv () function
to resolve any variable and osmods will resolve the reference from the system or the
structured environment variable library automatically.

Code Magus Limited 7 CML00066-01

4 DIRECT RETRIEVAL METHOD

4 Direct Retrieval Method

The direct method is discouraged as a general programming interface and is only of
importance to library developers (for example osmods).

4.1 Application Source Code and Linking

The calling application must include the header file strucenv.h and link to the
strucenv and supporting libraries for the relevant platform. Examples of the link
statements are:

For Linux and Unix:
-L path_to_libraries -lstrucenv —-lhashtab -1d1l
For Windows using Microsoft Visual C:

/LIBPATH path_to_libraries strucenv.lib hashtab.lib

4.2 Resolving a Reference

With the direct method an application calls the st rucenv library directly. If this is the
first reference to a store then the store is opened at the same time.

4.2.1 Synopsis

char xstrucenv_getenv (const char xsev, int flags);

The value of the SEV sev is returned as a pointer to a NULL terminated string. The
string should be copied and saved locally if the application wishes to retain the value
for any length of time. The flags allow various run time options to be set, see appendix
A on page 13.

4.2.2 Return Value

On success a pointer to the value of the SEV is returned, otherwise NULL is returned
and an error message can be obtained by calling st rucenv_error.

Code Magus Limited 8 CML00066-01

4.3 Closing a SEV Store 4 DIRECT RETRIEVAL METHOD

4.3 Closing a SEV Store
With the direct method the store can be explicitly closed in order to release any resources

held by it. The store name must be passed on this call. If the store is not explicitly closed
it will be closed by the atexit () function on platforms that support it.

4.3.1 Synopsis

void strucenv_close (const char xstorename) ;

4.3.2 Return Value

There is no return value from this call.

4.4 Obtaining Error Information
With the direct method, if there is an error during any processing, the last error that
occurred can be retrieved using this function. The error message is available until an-

other error overwrites it and as such should never be called after a successful call to the
library.

4.4.1 Synopsis

char *strucenv_error (void);

4.4.2 Return Value

This routine returns a pointer to the last error to occur on a call to the st rucenv library
or NULL if there is no outstanding error.

Code Magus Limited 9 CML00066-01

5 APPLPARMS BASED STORE

S applparms Based Store

5.1 Configuration Details

A structured environment variable configuration file that describes a store that uses
applparms to resolve the structured environment variables requires the following
configuration settings:

e Retrieval method module. This must be cmlapsem.so for Unix and Linux
platforms and cmlapsem.dl1 for Windows platforms.

e Retrieval method module entry point. This must be cmlapsem init.

e The application parameter configuration file name must be set via a system envi-
ronment variable as follows:

set applparms_apd = "SAMPLE.apd";
This names SAMPLE . apd as the applparms configuration file.

e The application parameter processing mode must be set via a system environment
variable as follows:

set applparms_mode = "ForeGround";

This value may only be ForeGround to force the application parameter user
interface to interact with the user. If any other value is specified or it is not spec-
ified then the processing is assumed to be back ground and there is no ability for
the user to change or supply any values for the variables. In back ground mode
all the variables defined by the applparms configuration file are assumed to
have a value and if, at run time, they do not the applparms library will return
an error and thus a NULL value for the structured environment variable that the
application is attempting to resolve.

5.2 Example SEV Configuration File

-— File: SAMPLE.sev

—-— This Structured Environment Variable Configuration File (SEV) is a definition
—— of how to retrieve the value of a variable from a store defined by a Code

—-— Magus Ltd. applparms definition.

—— It names the applparms definition and the module that will be used to

—-— retrieve the values.

—— SAuthor: hayward $

-— $Date: 2014/09/23 12:30:32 $

-— $Id: SAMPLE.sev,v 1.2 2014/09/23 12:30:32 hayward Exp $
-— $Name: $

Code Magus Limited 10 CML00066-01

5.3 Example applparms Configuration File 5 APPLPARMS BASED STORE

—-— SRevision: 1.2 $
—— S$State: Exp $

-- $Log: SAMPLE.sev,v $

-— Revision 1.2 2014/09/23 12:30:32 hayward

—— Allow the "default" keyword on a set command.
—— This means that the environment variable will
—-— only be set if it is not already set.

-— Revision 1.1 2010/05/17 15:01:36 hayward
—-— Write documentation and update code

—-— 1in places that showed problems or

—— inconsistent naming.

environment sample;

—— The applparms_apd environment variable defines which APD file to use for
—-— retrieving the values of the variables it defines.
—— For DNGGOO we use the same names APD file.

set applparms_apd = "SAMPLE.apd";

—— The applparms_mode environment variable defines whether the applparms UI will
-— wait for user interaction or attempt to continue without it. If set to

—— "BackGround" the UI will not wait for user interaction. In this case if any
—— 0of the parameters defined by the APD file do not have a value an error

—— condition will be raised.

set default applparms_mode = "BackGround";

—— Define the program module whose methods will be called to load and retrieve
—-— the applparms values.

path = ${CODEMAGUS_HOME}"/lib/";
module = "cmlapsem.so";
entry = cmlapsem_init;

end.

5.3 Example applparms Configuration File

application SAMPLE;
—— This APD file defines the parameters used by the SAMPLE store and defines
—-— various userids and passwords for remote access.

—— SAuthor: hayward $

-— $Date: 2010/06/02 16:16:55 $

-— $Id: SAMPLE.apd,v 1.1 2010/06/02 16:16:55 hayward Exp $
-— S$Name: $

—— SRevision: 1.1 $

—— S$State: Exp $

Code Magus Limited 11 CMLO00066-01

5.3 Example applparms Configuration File 5 APPLPARMS BASED STORE

—-— SLog: SAMPLE.apd,v $
—— Revision 1.1 2010/06/02 16:16:55 hayward
-— Add to CVS.

title "SAMPLE: Connection Parameters for Remote Access";
description "This file defines the parameters (or variables) and "
"their values that are required when accessing a remote system."

set TODAY = ${DATE_YYYYMMDD};
store ${CODEMAGUS_APDSTORE};

—— The interface defines the shared object or DLL program that will interact
—-— with the user to ensure that all parameters have a value. This may be
-— different of Windows as to Unix/Linux.

interface default;
entry none;

parameter MVS_USERID
title "MVS UserID";
default NULL;
options ;
description "User ID to connect to MVS with."
7
constraint "“["]\+$";
end

parameter MVS_PASSWD
title "MVS Password";
default NULL;
options secret; —— Value must not be shown by the UI.
description
"Password required when connecting to MVS."
7
constraint "“ [~]\+$"; —-—— at least one character, no spaces.
end
end.

Code Magus Limited 12 CMLO00066-01

A STRUCENV HEADER FILE

A strucenv Header File

#ifndef STRUCENV_H
#define STRUCENV_H
/% File: structenv.h

*

+ This header describes the interface to the Code Magus Limited Environment
* Variable store Module. The Environment Variable Store Module allows
* applications to retrieve the value of an variable as defined by the store
* the module reads from.

*

* Author: Stephen Donaldson [www.codemagus.com].

*

* Copyright (c) 2010 Code Magus Limited. All rights reserved.
*/
/%

* S$Author: hayward $

* $Date: 2010/05/17 15:01:36 $

%+ $Id: strucenv.h,v 1.3 2010/05/17 15:01:36 hayward Exp $

* SName: $

* SRevision: 1.3 $

* $State: Exp $

*

* $Log: strucenv.h,v $

* Revision 1.3 2010/05/17 15:01:36 hayward

* Write documentation and update code

* in places that showed problems or

*+ inconsistent naming.

*

* Revision 1.2 2010/05/06 08:41:33 hayward

* Remove all references to osmods as this

* module is built before it.

*

* Revision 1.1.1.1 2010/05/04 13:36:24 hayward

* Import sources to CVS.

*

*/

static char *cvs_strucenv_h =
"$Id: strucenv.h,v 1.3 2010/05/17 15:01:36 hayward Exp $";

/ *
* Constants and options:

*/

/%
* Exposed types and structures:

*/

/%
* Exported functions:

*/

Code Magus Limited 13 CMLO00066-01

A STRUCENV HEADER FILE

Function strucenv_getenv attemps to retrieve and return the value of the
qualified structured environment variable given in sev. If the value can
not be returned then NULL is returned.

Any errors encounted in the processing are written to stderr. If more
diagnostic information is required then set CODEMAGUS_MSGLEVEL=VERBOSE or
TRACE. This diagnostic information is also written to stderr.

b S S S S

char xstrucenv_getenv (const char *sev, int flags);
#define STRUCENV_OPT_VERBOSE 0x80000000

/* Function strucenv_close will free all allocated resources held for the
store. Once complete the store is closed and can not be accessed again

%+ unless it 1s re-opened.

There is no return code from this routine.

*
*/
void strucenv_close(const char *storename);

/* Function strucenv_error will return the last error that occurred within the
library when the return from another call to the library was not
successful. The error message is available until another error overwrites
it and as such should never be called after a successful call to the

* library.

*/
char *strucenv_error (void);

/ %
* Globals variables exported by library:
*/

#ifdef STRUCENV_INCLUDED_FROM_STRUCENV_C
#define STRUCENV_EXTERN /% local =*/
felse
#define STRUCENV_EXTERN extern
#endif

#undef STRUCENV_INCLUDED_FROM_STRUCENV_C
#undef STRUCENV_EXTERN

#endif /% STRUCENV_H x/

Code Magus Limited 14 CMLO00066-01

REFERENCES REFERENCES

References

[1] applparms: Application Parameters Library User Guide and Reference Version 1.
CML Document CML00054-01, Code Magus Limited, January 2010. PDF.

Code Magus Limited 15 CML00066-01

http://www.codemagus.com/documents/applparms_CML0005401.pdf

	1 Introduction
	1.1 Overview
	1.2 SEV Format

	2 SEV Configuration File
	2.1 Naming and Locating
	2.2 Syntax
	2.2.1 Configuration File
	2.2.2 Configuration header
	2.2.3 Configuration body
	2.2.4 Set statement
	2.2.5 Path statement
	2.2.6 Module statement
	2.2.7 Entry statement
	2.2.8 Value types
	2.2.9 String type

	3 Indirect Retrieval Method
	3.1 Application Source Code and Linking
	3.2 Resolving a reference

	4 Direct Retrieval Method
	4.1 Application Source Code and Linking
	4.2 Resolving a Reference
	4.2.1 Synopsis
	4.2.2 Return Value

	4.3 Closing a SEV Store
	4.3.1 Synopsis
	4.3.2 Return Value

	4.4 Obtaining Error Information
	4.4.1 Synopsis
	4.4.2 Return Value

	5 applparms Based Store
	5.1 Configuration Details
	5.2 Example SEV Configuration File
	5.3 Example applparms Configuration File

	A strucenv Header File

