
secfile: Code Magus Secure File

CML00124-01

Code Magus Limited (England reg. no. 4024745)

Number 6, 69 Woodstock Road

Oxford, OX2 6EY, United Kingdom

www.codemagus.com

Copyright c© 2014 – 2024 by Code Magus Limited

All rights reserved

January 6, 2025

CONTENTS CONTENTS

Contents

1 Introduction 2

2 Running secfile 3

3 Usecase scenarios 4

3.1 Exchange of data using only symmetric keys 6

3.2 One-time symmetric keys and asymmetric key encryption 9

3.3 Decryption by sharing clear text one-time keys 10

3.4 Decryption by sharing encrypted one-time keys 11

3.5 Reading clear text from a file descriptor 12

3.6 Writing multiple encrypted files with a template 12

Code Magus Limited 1 CML00124-01

1 INTRODUCTION

1 Introduction

secfile: Code Magus Secure File is the Code Magus utility used for securely sharing

files. The data is triple-DES CBC encrypted, with varying key lengths options (that

is, number of keys). The data is compressed prior to encryption in a loss-less manner

and decompressed post decryption before restoring the contents in the clear to a file.

Integrity is ensured by computing signatures using an MD5 hash1 on both the clear data

and the compressed and encrypted file data. The tool is available for sharing data across

platforms including Windows, AIX, Linux, and z/OS.

There are various modes available for key management. Known symmetric DES keys

can be supplied using the Code Magus Key Management library (a text format con-

taining possibly multiple keys identified each identified by a unique key-set-id). Addi-

tionally the DES keys can be generated by secfile using a cryptographically secure

random number generator (see RAND bytes in OpenSSL2). In this modes, an RSA

asymmetric cipher pubic key is expected which is used to encrypt the generated one-

time keys and places the encrypted keys in a separate file for sharing with the party that

holds the corresponding private key.

1RSA Data Security, Inc. MD5 Message-Digest Algorithm.
2OpenSSL DES, RSA functions from the OpenSSL project (www.openssl.org)

Code Magus Limited 2 CML00124-01

2 RUNNING SECFILE

2 Running secfile

The program runs from the command line, either under a UNIX/Linux shell, at the

Windows command prompt or bat-file, or under OMVS or BPXBATCH when running

under z/OS.

secfile --function=encrypt \

--clear-text-file-name=/tmp/testfile.txt \

--clear-text-file-mode=r \

--cipher-text-file-name=/tmp/testfile.enc \

--key-set-file=/tmp/keyset.keys \

--key-set-name=mykeyset

Where /tmp/testfile.txt is the name of the clear text file to be encrypted and

/tmp/testfile.enc is the name of the resultant compressed and encrypted file.

The file /tmp/keyset.keys is the file containing the symmetric cipher triple-DES

keys to use to encrypt the data, and where mykeyset is the name of the specific key

set to use for encryption. The following is an example of a key management key set file:

set(mykeyset)

-- Keys file name: /tmp/keyset.keys

mode(live)

keys(X"2F6D9289E0085BC7",X"0D01A8EA2943E545",X"B6B03D29F8FEC7FE")

;

For this example, the clear-text file can be recovered as /tmp/testfile clear.txt

using the following command:

secfile --function=decrypt \

--clear-text-file-name=/tmp/testfile_clear.txt \

--clear-text-file-mode=w \

--cipher-text-file-name=/tmp/testfile.enc \

--key-set-file=/tmp/keyset.keys \

--key-set-name=mykeyset

The full set of secfile command line options can be shown by running the command

with the --help command line option:

[stephen@developer secfile]$ secfile --help

Code Magus Limited secfile V2.0: build 2024-12-10-11.32.48

[secfile Dec 10 2024 11:32:48]

Copyright (c) 2002--2024 by Code Magus Limited. All rights reserved.

[Assistance stephen@codemagus.com].

$Id: secfile_CML0012401.tex,v 1.4 2024/12/16 22:38:14 stephen Exp $

[OpenSSL DES, RSA functions from the OpenSSL project (www.openssl.org).]

[RSA Data Security, Inc. MD5 Message-Digest Algorithm.]

[zlib general purpose compression library. (www.cdrom.com/pub/infozip/zlib/).]

[Code Magus Limited RDWIO I/O library. (www.codemagus.com).]

Usage: secfile [OPTION...]

-f, --function={encrypt|decrypt|deskeys} Function to be performed

--clear-text-file-name=<file-name> Name of the clear text file

-m, --clear-text-file-mode=[{<in-mode>|r|rb,type=record}] Input file open mode string

--clear-text-file-desc=<file-desc> File descriptor of the clear text

file

--cipher-text-file-name=<file-name> Name of the cipher text file

-K, --key-set-file=<key-set-file> File containing named DES key sets

Code Magus Limited 3 CML00124-01

3 USECASE SCENARIOS

-k, --key-set-name=<key-set-name> DES key set name to used from key

set file

--private-key=<private-key-file> Private key of public/private key

pair file

--public-key=<public-key-file> Public key of public/private key

pair file

--encrypted-key=<encryption-key-file> Public key encrypted encryption

keys file

-s, --clear-text-record-length=<clear-reclen> Logical record length of clear text

file

-r, --clear-text-uses-rdwio Use the RDW I/O library for clear

text file

-x, --clear-text-translate={ascii|ebcdic} Clear text character set. Cypher

text opposite,

-a, --clear-text-line-feed Clear text file records terminated

as text (LF/CRLF)

-l, --record-limit=<record count> Limit number of records processed

--help-split-encrypted-output Help on using the log splitting

options

-T, --enc-out-name-strftime Use strftime on pattern in output

encrypted files

-B, --enc-out-segment-bytes=<byte-count> Switch output encrypted files after

byte count reached

-S, --enc-out-segment-seconds=<seconds> Switch output encrypted files after

time in seconds expires

-R, --enc-out-segment-records=<records> Switch output encrypted files after

record count reached

Help options:

-?, --help Show this help message

--usage Display brief usage message

3 Usecase scenarios

Depending on the particular setting and security policies and procedures in place, there

are a number of modes of operation which may satisfy the requirements of a particular

instance. The following sections detail these additional scenarios in addition to the basic

scenario illustrated in Section 1.

In these additional scenarios, the presence of the following files is assumed:

Code Magus Limited 4 CML00124-01

3 USECASE SCENARIOS

File name Description

/tmp/testfile.txt The name of the original clear text file, the data.

/tmp/private.pem A private key of a key-pair generated by and

held securely by the securing officer responsible

for the first partya

aHere, the first party is the party that originates the

clear text data. The second party is the party that con-

sumes or processes the data.

/tmp/public.pem A public key of the same key pair as the

/tmp/private.pem made available by the

security officer responsible for the first party.
/tmp/return_private.pem A private key of a key-pair generated by and

held securely by the securing officer responsible

for the second party. For some usecases, this

may be the second party required to consume

or process the data.
/tmp/return_public.pem A public key of the same key pair as the

/tmp/return_private.pem made avail-

able to the security officer responsible for the

first party.

As used here, a sample cleat text file can be generated from a local random source and

base-64 encoded as follows:

base64 /dev/urandom | head -c 100000000 > /tmp/testfile.txt

For the examples used in here, the key-pairs are generated using the respective OpenSSL

commands:

openssl genrsa -out /tmp/private.pem 8192

openssl rsa -pubout -in /tmp/private.pem \

-out /tmp/public.pem

openssl genrsa -out /tmp/return_private.pem 1024

openssl rsa -pubout -in /tmp/return_private.pem \

-out /tmp/return_public.pem

There are a number of modes that the compression-encryption and the decryption-

uncompress can operate. Each independently. The compression-encryption function

can read both a file or a file-descriptor. Being able to read a file descriptor allows the

compression-encryption process to read a pipe in which case clear-text data does not

have to hardened at any point during the data production/gathering process.

In the mode that one-time-keys are generated for the compression and encryption func-

tion, then the generated keys are encrypted with a supplied public key of an RSA key

pair (a public key generated by the security officer responsible for the first party). If this

mode is used by the first party whilst readying a pipe, then not only is the clear-text data

not hardened on the system in which the data is generated/gathered, but without access

Code Magus Limited 5 CML00124-01

3.1 Exchange of data using only symmetric keys 3 USECASE SCENARIOS

to the corresponding public key, it is not possible for the generating or gathering system

or the first party, to decrypt the data produced.

In the mode where one-time keys are generated for the data encryption, it is possible

for a party with access to the corresponding private key (that is, the security officer

responsible for the first party) to use the secfile program to generate a key-set file

containing the tripe-DES keys in the clear. This clear key-set file can be shared with the

second party with the compressed-encrypted file in hand so that the original clear text

file can be recovered.

A further option would be to have the first party security officer with access to the private

key decrypt the encrypted key-set file with that private key, and then re-encrypt the file

with a public key shared by the security officer of the second party, that is from another

key-pair. This would allow only the intended second party to have access to the clear

text data — provided the second party can be trusted to keep the corresponding private

key secure.

When compression and encrypting file, the output file name can be specified as a tem-

plate, and in which case the compressed-encrypted data is written out into multiple files.

When this output mode is selected with the one-time key set option, each individual file

is encrypted with a unique set of triple-DES keys, and hence multiple encrypted one-

time key set files are produced, one corresponding to each of the compressed-encrypted

files.

The required commands to illustrate these scenarios are shown in the following sections.

3.1 Exchange of data using only symmetric keys

This is the scenario introduced in the Section 2. Following an agreed key exchange

policy, the security officer of the either party exchanges keys with the security officer

of the other party. Since the symmetric key set is required for the encryption process

and the decryption process, the party or process producing or preparing the data for

sharing and the party of process for consuming or preparing the data for consumption

both require copies of the keys. The security of this scenario requires a secure exchange

of the symmetric cipher keys (in this case DES or triple-DES encryption keys) as well as

being able to maintain the security of the keys once installed on the respective processing

platforms.

Assuming, as before, the following keys had been exchanged and saved in /tmp/keyset.keys

(which in a real situation would not be stored in a file in /tmp). In this case, a triple

length set of DES keys are being used:

set(mykeyset)

-- Keys file name: /tmp/keyset.keys

mode(live)

Code Magus Limited 6 CML00124-01

3.1 Exchange of data using only symmetric keys 3 USECASE SCENARIOS

keys(X"2F6D9289E0085BC7",X"0D01A8EA2943E545",X"B6B03D29F8FEC7FE")

;

The following command would be used by the first party in order to compress and

encrypt the file. The MD5 signature values should be captured and shared with the

second party in a manner that can be verified. The command reads in clear text file

/tmp/testfile.txt and produces the output file /tmp/testfile.enc of the

same contents by compressing and encrypting using triple-DES using the supplied sym-

metric keys.

secfile --function=encrypt \

--clear-text-file-name=/tmp/testfile.txt \

--clear-text-file-mode=r \

--cipher-text-file-name=/tmp/testfile.enc \

--key-set-file=/tmp/keyset.keys \

--key-set-name=mykeyset

Code Magus Limited secfile V2.0: build 2024-12-10-11.32.48

[secfile Dec 10 2024 11:32:48]

Copyright (c) 2002--2024 by Code Magus Limited. All rights reserved.

[Assistance stephen@codemagus.com].

$Id: secfile_CML0012401.tex,v 1.4 2024/12/16 22:38:14 stephen Exp $

[OpenSSL DES, RSA functions from the OpenSSL project (www.openssl.org).

[RSA Data Security, Inc. MD5 Message-Digest Algorithm.

[zlib general purpose compression library. (www.cdrom.com/pub/infozip/zlib/).

[Code Magus Limited RDWIO I/O library. (www.codemagus.com).

DES_set_key_checked rc = 0

DES_set_key_checked rc = 0

DES_set_key_checked rc = 0

Number of records processed = 3053

Cypher text total = 76219616 bytes, clear text total = 100000000 bytes

Encryption computed file details:

Start time = Mon Dec 16 17:22:18 2024

End time = Mon Dec 16 17:22:26 2024

Record count = 3053

Computed clear text file MD5 = 0F045F10F02769E176F8D46B06BBE58E

Computed cipher text file MD5 = C7F3EF2959D0420415ABEFF0AD142E36

The following command would be used by the second party to decrypt and uncom-

press the file. The shared MD5 values can be used to verify that the file remains in-

tact, and has not been changed by comparing the values to the independently shared

values generated when the file was compressed and encrypted. This ensures that the

has not been tampered with and is indeed the file originally put forward for compres-

sion and encryption. To ensure that it is generated from the same set of keys, and

also not tampered with the decryption and decompressing process re-computes the

MD5 values and compares them to the values stored in the file and generated during

Code Magus Limited 7 CML00124-01

3.1 Exchange of data using only symmetric keys 3 USECASE SCENARIOS

the corresponding compression and encryption process. The uncompressed and de-

crypted file /tmp/testfile clear.txt should exactly match the original text file

/tmp/testfile.txt.

secfile --function=decrypt \

--clear-text-file-name=/tmp/testfile_clear.txt \

--clear-text-file-mode=w \

--cipher-text-file-name=/tmp/testfile.enc \

--key-set-file=/tmp/keyset.keys \

--key-set-name=mykeyset

Code Magus Limited secfile V2.0: build 2024-12-10-11.32.48

[secfile Dec 10 2024 11:32:48]

Copyright (c) 2002--2024 by Code Magus Limited. All rights reserved.

[Assistance stephen@codemagus.com].

$Id: secfile_CML0012401.tex,v 1.4 2024/12/16 22:38:14 stephen Exp $

[OpenSSL DES, RSA functions from the OpenSSL project (www.openssl.org).

[RSA Data Security, Inc. MD5 Message-Digest Algorithm.

[zlib general purpose compression library. (www.cdrom.com/pub/infozip/zlib/).

[Code Magus Limited RDWIO I/O library. (www.codemagus.com).

DES_set_key_checked rc = 0

DES_set_key_checked rc = 0

DES_set_key_checked rc = 0

Number of records processed = 3053

Cypher text total = 76219616 bytes, clear text total = 100000000 bytes

Encryption computed file details:

Start time = Mon Dec 16 17:22:18 2024

End time = Mon Dec 16 17:22:26 2024

Record count = 3053

Computed clear text file MD5 = 0F045F10F02769E176F8D46B06BBE58E

Computed cipher text file MD5 = C7F3EF2959D0420415ABEFF0AD142E36

Decryption computed file details:

Start time = Mon Dec 16 17:22:26 2024

End time = Mon Dec 16 17:22:31 2024

Record count = 3053

Computed clear text file MD5 = 0F045F10F02769E176F8D46B06BBE58E

Computed cipher text file MD5 = C7F3EF2959D0420415ABEFF0AD142E36

The respective MD5 values should match the values produced when the file was com-

pressed and encrypted, and the two sets of MD5 values shown on the decrypt and un-

compress should match each other.

Code Magus Limited 8 CML00124-01

3.2 One-time symmetric keys and asymmetric key encryption3 USECASE SCENARIOS

3.2 One-time symmetric keys and asymmetric key encryption

It is not necessary to exchange symmetric keys up-front. If the first party security of-

ficer shares the public key of a asymmetric key-pair (here, RSA key-pairs are used),

then a mode of operation of secfile can be used to generate a set of triple-DES keys

(using an OpenSSL method for generating cryptographically secure random bytes) to

be used as a one-time set of keys to encrypt the data. The generated set of keys are

then encrypted with the supplied public key and saved in a file. This scenario renders it

impossible for the first party producer to recover the data from the compressed and en-

crypted file without the contents of the private key (in this case /tmp/private.pem)

held by the security officer responsible for the first party.

The following command illustrates this mode of operation:

secfile --function=encrypt \

--clear-text-file-name=/tmp/testfile.txt \

--clear-text-file-mode=r \

--cipher-text-file-name=/tmp/testfile.pub_enc \

--public-key=/tmp/public.pem \

--encrypted-key=/tmp/one_time_keys.pub_enc

Code Magus Limited secfile V2.0: build 2024-12-10-11.32.48

[secfile Dec 10 2024 11:32:48]

Copyright (c) 2002--2024 by Code Magus Limited. All rights reserved.

[Assistance stephen@codemagus.com].

$Id: secfile_CML0012401.tex,v 1.4 2024/12/16 22:38:14 stephen Exp $

[OpenSSL DES, RSA functions from the OpenSSL project (www.openssl.org).

[RSA Data Security, Inc. MD5 Message-Digest Algorithm.

[zlib general purpose compression library. (www.cdrom.com/pub/infozip/zlib/).

[Code Magus Limited RDWIO I/O library. (www.codemagus.com).

DES_set_key_checked rc = 0

DES_set_key_checked rc = 0

DES_set_key_checked rc = 0

Number of records processed = 3334

Cypher text total = 76207304 bytes, clear text total = 100000000 bytes

Encryption computed file details:

Start time = Mon Dec 16 17:22:10 2024

End time = Mon Dec 16 17:22:18 2024

Record count = 3334

Computed clear text file MD5 = 0F045F10F02769E176F8D46B06BBE58E

Computed cipher text file MD5 = 28D447622AADABD4FB44EF9EF1A2AC9A

This command compresses and encrypts the supplied clear text file /tmp/testfile.txt,

this time producing both a compressed encrypted file and a file containing the one-time

key-set file /tmp/one time keys.pub enc which is encrypted under the supplied

public key. In all other respects, processing is the same as that used in the scenario

Code Magus Limited 9 CML00124-01

3.3 Decryption by sharing clear text one-time keys 3 USECASE SCENARIOS

explained in Section 3.1.

3.3 Decryption by sharing clear text one-time keys

In this scenario, the security officer of the first party, or any party with access to the

public key generated by the security officer of the first party, can have the encrypted file

sent to then and a corresponding key-set file can be extracted from the encrypted key set

file. This clear text triple-DES key set can be sent to the third party that is required to

decrypt the corresponding compressed and encrypted file for processing.

In order to accomplish this, the deskeys function of secfile is used with a supplied

private key:

secfile --function=deskeys \

--key-set-file=/tmp/keyset.keys \

--key-set-name=mykeyset \

--private-key=/tmp/private.pem \

--encrypted-key=/tmp/one_time_keys.pub_enc

Code Magus Limited secfile V2.0: build 2024-12-10-11.32.48

[secfile Dec 10 2024 11:32:48]

Copyright (c) 2002--2024 by Code Magus Limited. All rights reserved.

[Assistance stephen@codemagus.com].

$Id: secfile_CML0012401.tex,v 1.4 2024/12/16 22:38:14 stephen Exp $

[OpenSSL DES, RSA functions from the OpenSSL project (www.openssl.org).

[RSA Data Security, Inc. MD5 Message-Digest Algorithm.

[zlib general purpose compression library. (www.cdrom.com/pub/infozip/zlib/).

[Code Magus Limited RDWIO I/O library. (www.codemagus.com).

Here, the file /tmp/one time keys.pub enc contains the one-time triple-DES

keys encrypted under the public key provided by the security officer responsible for

the first party. This command creates the file /tmp/keyset.keys into which the

clear-text triple-DES keys are placed as a key-set with key-set id of mykeyset.

[stephen@developer secfile]$ cat /tmp/keyset.keys

set(mykeyset)

-- Keys file name: /tmp/keyset.keys

mode(live)

keys(X"3838C21F2616640B",X"BF64BA316B46BADA",X"384F5DCBCD2F2319")

;

This method requires the party holding the private key to have the secfile program

installed. The following method does not require this if OpenSSL is available on the

platform that contains the private key. If secfile is available on the platform that contains

the private key generated by the security officer responsible for the first party, then if the

security officer responsible for the second party has shared a public key with the security

Code Magus Limited 10 CML00124-01

3.4 Decryption by sharing encrypted one-time keys 3 USECASE SCENARIOS

officer responsible for the first party, then the first party security officer can return the

one-time key file encrypted under this public key. This would ensure that no other party

of privy to the data contents (provided the public keys remain secret).

3.4 Decryption by sharing encrypted one-time keys

There is another method of sending the one-time keys to the second party which is

applicable in the case where the secfile program is not available on the platform

where the first party private key is available, but where OpenSSL is available. Similar

to the method described at the end of Section 3.3. In this method OpenSSL and the

first party private key is used to decrypt the one-time keys file, and then the one-time

keys file is immediately re-encrypted with the public key shared by the security officer

responsible for the second party. The data is then decrypted and uncompressed using

the private key of the second party:

openssl rsautl -decrypt -in /tmp/one_time_keys.pub_enc \

-out /tmp/checkfile_otp \

-inkey /tmp/private.pem

openssl rsautl -encrypt -in /tmp/checkfile_otp \

-out /tmp/one_time_keys.pub_re_enc \

-pubin -inkey /tmp/return_public.pem

Once the second party receives the re-encrypted key file /tmp/one time keys.pub re enc

and has the compressed and encrypted data file /tmp/testfile.pub enc in hand,

the clear text can be decrypted and uncompressed into a clear text file /tmp/testfile.pub3 txt:

secfile --function=decrypt \

--clear-text-file-name=/tmp/testfile.pub3_txt \

--clear-text-file-mode=w \

--cipher-text-file-name=/tmp/testfile.pub_enc \

--encrypted-key=/tmp/one_time_keys.pub_re_enc \

--private-key=/tmp/return_private.pem

Code Magus Limited secfile V2.0: build 2024-12-10-11.32.48

[secfile Dec 10 2024 11:32:48]

Copyright (c) 2002--2024 by Code Magus Limited. All rights reserved.

[Assistance stephen@codemagus.com].

$Id: secfile_CML0012401.tex,v 1.4 2024/12/16 22:38:14 stephen Exp $

[OpenSSL DES, RSA functions from the OpenSSL project (www.openssl.org).

[RSA Data Security, Inc. MD5 Message-Digest Algorithm.

[zlib general purpose compression library. (www.cdrom.com/pub/infozip/zlib/).

[Code Magus Limited RDWIO I/O library. (www.codemagus.com).

DES_set_key_checked rc = 0

DES_set_key_checked rc = 0

DES_set_key_checked rc = 0

Code Magus Limited 11 CML00124-01

3.5 Reading clear text from a file descriptor 3 USECASE SCENARIOS

Number of records processed = 3334

Cypher text total = 76207304 bytes, clear text total = 100000000 bytes

Encryption computed file details:

Start time = Mon Dec 16 17:22:10 2024

End time = Mon Dec 16 17:22:18 2024

Record count = 3334

Computed clear text file MD5 = 0F045F10F02769E176F8D46B06BBE58E

Computed cipher text file MD5 = 28D447622AADABD4FB44EF9EF1A2AC9A

Decryption computed file details:

Start time = Mon Dec 16 17:22:57 2024

End time = Mon Dec 16 17:23:02 2024

Record count = 3334

Computed clear text file MD5 = 0F045F10F02769E176F8D46B06BBE58E

Computed cipher text file MD5 = 28D447622AADABD4FB44EF9EF1A2AC9A

3.5 Reading clear text from a file descriptor

When compression and encrypting data, secfile allows the clear test data to be sup-

plied using a file descriptor. This is useful where the clear text data is not to be hardened

on the generating/gathering system and can only be hardened once suitably encrypted.

This is useful when recording data from trace programs which may contain sensitive

data. For example, when gathering network packets using tcpdump. It is also pos-

sible to supply the data to be decrypted using a file descriptor rather than a disk file.

The following example shows the compression and encryption function using generated

one-time keys while reading the cleat text data from a file descriptor:

cat /tmp/testfile.txt | secfile --function=encrypt \

--clear-text-file-desc=0 \

--clear-text-file-mode=r \

--cipher-text-file-name=/tmp/testfile_fd.pub_enc \

--public-key=/tmp/public.pem \

--encrypted-key=/tmp/one_time_keys_fd.pub_enc

3.6 Writing multiple encrypted files with a template

By specifying the output file as a template, secfile is able to create many compressed

and encrypted output files from a single input file or file descriptor. This is useful for

long or permanently running data collectors. Each output file is given a unique file

name which includes a sequence number and a time-stamp (if required). If a public key

is provided and one-time keys are being used to encrypt the data, then every compressed

and encrypted output file is generated with a separate set of triple-DES keys, and hence,

Code Magus Limited 12 CML00124-01

3.6 Writing multiple encrypted files with a template 3 USECASE SCENARIOS

for every encrypted file containing a portion of the input, there is an encrypted one-time

keys file. The following command illustrates this scenario:

./secfile \

--function=encrypt \

--clear-text-file-name=/tmp/testfile.pub_txt \

--cipher-text-file-name=/tmp/testfile_ENC_file \

--encrypted-key=/tmp/testfile_ENC_key \

--public-key=/tmp/public.pem \

--enc-out-segment-records=10

Here, the input is split into chunks of 10 lines each, and creates the following files as

output. The files with the suffix CMLz are the compressed and encrypted files, and the

files with suffix CMLotk are the corresponding one-time key files encrypted under the

public key /tmp/public.pem.

[stephen@developer secfile]$ ls -lat /tmp/ | head

-rw-rw-r-- 1 stephen stephen 259280 Dec 16 22:14 testfile_ENC_file_00018674_00000001.CMLz

-rw-rw-r-- 1 stephen stephen 1024 Dec 16 22:14 testfile_ENC_key_00018674_00000001.CMLotk

-rw-rw-r-- 1 stephen stephen 259280 Dec 16 22:14 testfile_ENC_file_00018674_00000002.CMLz

-rw-rw-r-- 1 stephen stephen 1024 Dec 16 22:14 testfile_ENC_key_00018674_00000002.CMLotk

-rw-rw-r-- 1 stephen stephen 259280 Dec 16 22:14 testfile_ENC_file_00018674_00000003.CMLz

-rw-rw-r-- 1 stephen stephen 1024 Dec 16 22:14 testfile_ENC_key_00018674_00000003.CMLotk

-rw-rw-r-- 1 stephen stephen 259360 Dec 16 22:14 testfile_ENC_file_00018674_00000004.CMLz

-rw-rw-r-- 1 stephen stephen 1024 Dec 16 22:14 testfile_ENC_key_00018674_00000004.CMLotk

-rw-rw-r-- 1 stephen stephen 259280 Dec 16 22:14 testfile_ENC_file_00018674_00000005.CMLz

-rw-rw-r-- 1 stephen stephen 1024 Dec 16 22:14 testfile_ENC_key_00018674_00000005.CMLotk

-rw-rw-r-- 1 stephen stephen 259360 Dec 16 22:14 testfile_ENC_file_00018674_00000006.CMLz

-rw-rw-r-- 1 stephen stephen 1024 Dec 16 22:14 testfile_ENC_key_00018674_00000006.CMLotk

-rw-rw-r-- 1 stephen stephen 259280 Dec 16 22:14 testfile_ENC_file_00018674_00000007.CMLz

-rw-rw-r-- 1 stephen stephen 1024 Dec 16 22:14 testfile_ENC_key_00018674_00000007.CMLotk

...

Code Magus Limited 13 CML00124-01

