
PPMSORT: Parallel Open Systems Sort Fixed
Format Record Based File Sorting User Guide and

Reference Version 1

CML00003-01

Code Magus Limited (England reg. no. 4024745)
Number 6, 69 Woodstock Road

Oxford, OX2 6EY, United Kingdom
www.codemagus.com

Copyright c⃝ 2014 by Code Magus Limited
All rights reserved

December 15, 2020

CONTENTS CONTENTS

Contents
1 Introduction 2

2 Configuration File 2
2.1 Configuration File Location . 2
2.2 Configuration File Settings . 3

3 Command Line Arguments 7
3.1 Configuration File Parameters . 7
3.2 Configuration File Options . 9
3.3 Application Sorting Requirements . 9

4 Sort Examples 13
4.1 Sorting ASCII Print Data . 13
4.2 Dropping Duplicates . 14
4.3 Sorting ASCII Data in an EBCDIC Sequence 15

Code Magus Limited 1 CML00003-01

2 CONFIGURATION FILE

1 Introduction

PPMSORT is a sort utility which can be configured to use the resources of an available
machine in order to improve the sort times and throughput. PPMSORT sorts files which
are expected to be made up of records with fixed or variable length records, but which
adhere to a fixed layout such as is typical of files described and used in legacy systems
such as PL/I and COBOL.

PPMSORT uses a configuration file in which the bounds on the resources that an instance
of PPMSORT may use are stated.

From an application point of view, the format of the key specification follows the same
syntax and semantics as is used on traditional host systems such as MVS. In addition it
is possible to use the application meta-data to specify fields and hence to describe the
sort requirements in a symbolic manner.

2 Configuration File

When PPMSORT is started, a suitable configuration file is sought which is used to supply
the resource bound values; to specify the location of PPMSORT components; and to
specify global parameters that are required to be applicable to all PPMSORT instances
that use that configuration file. It is an error for no applicable configuration file to be
found.

2.1 Configuration File Location

If the environment variable PPMSORTCONF is set, then it is expected to contain the path
and file name of the configuration file to use. If this method of naming and locating the
configuration file is used it takes precedence over all other methods of locating a usable
configuration file. For example, in the following, the user is requesting that his own test
version of the configuration file be used to govern the following sort:

[stephen@nomad sorttest]$ cp ppmsort.cfg testsort.cfg
[stephen@nomad sorttest]$ vi testsort.cfg
[stephen@nomad sorttest]$ export PPMSORTCONF=testsort.cfg
[stephen@nomad sorttest]$ ppmsort --input-file-name=/tmp/sortdata.bin \

--output-file-name=/tmp/testdata.bin \
--record-length=$RECLEN \
--sort-key="SORT FIELDS=(11,23,CST,A)"

[ppmsort] $Id: ppmsort.c,v 1.23 2010/04/07 18:50:42 hayward Exp $
Copyright (c) 2007 by Code Magus Limited. All rights reserved.
mailto:stephen@codemagus.com, http://www.codemagus.com.
Total bytes input to sort process = 1150000.
Total records input to sort process = 50000.

Code Magus Limited 2 CML00003-01

2.2 Configuration File Settings 2 CONFIGURATION FILE

Total bytes output from sort process = 1150000.
Total records output from sort process = 50000.
[stephen@nomad sorttest]$

If the PPMSORTCONF environment variable is not set then the current working direc-
tory is checked for the presence of a file called ppmsort.cfg and should this file be
present then it is processed as though it is a PPMSORT configuration file.

If, after checking the current working directory, a configuration file is not found, then
the presence of the system wide PPMSORT configuration file /etc/ppmsort.cfg is
determined and if present is used as the configuration file.

The reason for the various configuration files is to allow different sort situations to be
used if required, but then to default to a common system wide or application wide con-
figuration file for all requests for which a system or application wide configuration is
applicable.

2.2 Configuration File Settings

Independent of the location of a PPMSORT configuration file, the contents always have
the same format. A configuration file is a text file which adheres to a particular grammar.
Comments and blank lines are allowed anywhere in a configuration file, except that
comments may not appear between the letters of a keyword or string. A comment
may appear anywhere on a line and the presence of a comment is introduced by two
consecutive dashes (--). A comment starts from the -- characters and continues up
to and including the end of the line on which the -- appear. Comments cannot be
continued and so should a comment need to span more than one line, subsequent lines
should be prefixed with the -- characters.

All configuration file options and values can be overridden as a command line argument
to PPMSORT (See Section 3).

The following describes the syntax and corresponding semantics of PPMSORT configu-
ration files.

ConfigFile

- ConfigItemList -

ConfigItemList

- ConfigItem�
�- ConfigItemList - ConfigItem

�
�

-

Code Magus Limited 3 CML00003-01

2.2 Configuration File Settings 2 CONFIGURATION FILE

ConfigItem

- Options�
�- Values

�
�

-

A configuration file provides values and options that will be used by a PPMSORT pro-
cess instance. The file comprises a list of statements which are either option or flag
statements or provide values to items. Options correspond to flags where a flag is set
by the presence of an option keyword. Values are assigned by the configuration file by
using the name of the value followed by an = sign followed by the item’s value. Both
option and value configuration file statements are terminated by a semi-colon.

Options

- options
�� ��- OptionList - ;

����-

OptionList

- Option�
� ,

�����
�
�

-

Option

- verbose
�� ���

�- quiet
�� ���- stable
�� ���- ascii as ebcdic
�� ��

�
�
�
�

-

An options statement is introduced using the options keyword. The elective options
are indicated by a comma-separated list of keywords that correspond to the required
option flags. There can be more than one options statement in a configuration file.

The verbose option indicates that all processing should proceed in a manner which
maximises the diagnostic output produced. In particular all the internal process argu-
ments are formatted and the intermediate sort-work files are not removed once they are
no longer required for processing. The purpose of the verbose flag is to provide diagnos-
tic output should problems be encountered either with the environment that PPMSORT
operates in or with PPMSORT itself.

The quiet option is provided to have an alternative to the verbose option. The
option has no effect and is supported as a comment.

Code Magus Limited 4 CML00003-01

2.2 Configuration File Settings 2 CONFIGURATION FILE

The stable option causes the sort processing to operate in a stable manner, that is that
records of equal key values retain their relative position in the output file.

The ascii as ebcdic option treats all ASCII character data as the corresponding
EBCDIC character data and applies the EBCDIC ordering of the graphic characters to
the ASCII data. It is assumed that the character based data is ISO-8 data with graphic
mappings according to IBM code page 819, and that the corresponding EBCDIC data
graphic mappings are according to IBM code page 1047.

The primary affect that this option will have on the collating sequence of character data
is that the digits will fall after all alphabetic characters and that the lower case characters
will appear before all the upper case characters. This is different to the ASCII or ISO-8
assignments in which the digits precede the upper case characters and which in turn
precede the lower case characters. Additionally, the relative placement of the other
characters such as the control and special graphic characters are ordered according to
EBCDIC IBM code page 1047 code points rather than the ISO-8 IBM code page 819
code points.

As an example, the following options statement requests that PPMSORT behave as a
stable sort and that the characters’ collating sequence is to conform the IBM code page
1047, assuming that the original data comprised of IBM code page 819 graphics.

options stable, ascii_as_ebcdic;

Code Magus Limited 5 CML00003-01

2.2 Configuration File Settings 2 CONFIGURATION FILE

Values

- driver
�� ��- =

����- String - ;
�����

�- phase1
�� ��- =

����- String - ;
�����- phase2

�� ��- =
����- String - ;

�����- driver nice
�� ��- =

����- Number - ;
�����- phase1 nice

�� ��- =
����- Number - ;

�����- phase1 nice
�� ��- =

����- Number - ;
�����- license

�� ��- =
����- String - ;

�����- max records
�� ��- =

����- Number - ;
�����- max bytes

�� ��- =
����- Number - ;

�����- max phase1 procs
�� ��- =

����- Number - ;
�����- max phase2 procs

�� ��- =
����- Number - ;

�����- stream buffer size
�� ��- =

����- Number - ;
�����- max size

�� ��- =
����- Number - ;

�����- sortwork
�� ��- =

����- String - ;
����

�
�
�
�
�
�
�
�
�
�
�
�
�
�

-

String

-
�̈���- Character�

�
�
�
-
�̈����

�-�́���- Character�
�

�
�
-
�́���

�

�

-

In the first instance a Character is any single byte character excluding the carriage re-
turn, line feed, tab or quotation mark characters; and in the second instance a Character
is any single byte character excluding the carriage return, line feed, tab or apostrophe
characters.

Code Magus Limited 6 CML00003-01

2.2 Configuration File Settings 2 CONFIGURATION FILE

Number

- Digit�
�

�
�

-

A Digit is any of the characters ’0’ to ’9’.

The driver value indicates the location and name of the driving process. This is
required by the internal sort interface library (ppmsapi.so). It is not required if the
internal sort interface is not used.

The phase1 and phase2 values indicate to the PPMSORT driving process (ppm-
sort) where the phase one and phase two component commands are located. The
value is the full or relative path of of the corresponding component. Ordinarily, these
values should not be changed for a particular machine or environment once the software
has been installed.

The driver nice, phase1 nice and phase2 nice values are used for adjusting
the relative process priorities and correspond to the driver, phase1 and phase2
process priorities, respectively. In each case the process priority is adjusted using the
supplied value as the argument in a nice(2) call.

The license string is expected to comprise of a sequence of characters which are
valid as hexadecimal. The supplied license key validates against the current machine
and hence each machine should have its own license key generated. The key value must
be exactly 32 characters long, representing the value of an eight byte key:

license = "9312975875F523A17A8B09E8E7E09EF4"; /* license key */

It is also possible to supply the license key value directly or indirectly using an appropri-
ate environment variable (CODEMAGUS RUNTIME KEY PPMSORT or CODEMAGUS -
KEYFILE). These environment variables supply the value of the license key or the path
and file name of the license key file.

The max records parameter gives the upper bound on the number of records that can
be considered for sorting in a single instance of a sort phase process.

The max bytes parameter gives the upper bound on the number of bytes that can be
considered for sorting in a single instance of a sort phase process.

In the following example, the maximum number of records that a single sort phase
process can deal with is bounded by 0.1 million and the maximum number of bytes that
any sort phase process can deal with is bounded by 40 million:

max_records = 100000; -- maximum number of records per partition
max_bytes = 40000000; -- maximum number of bytes per partition

The driving process spawns a number of phase one and phase two helper processes. A
phase one helper process is responsible for sorting a portion of the input file and a phase

Code Magus Limited 7 CML00003-01

2.2 Configuration File Settings 2 CONFIGURATION FILE

two helper process is responsible for merging a number of sorted files together. Be-
cause the resource profile of the phase one and phase two processes can be significantly
different, depending on the values set by the other resource constraint parameters, the
upper bound of the number of each of these process types can be specified and individ-
ually controlled. The parameter max phase1 procs provides an upper bound to the
maximum number of concurrent phase one processes whilst the max phase2 procs
parameter provides the same control for the phase two processes.

In the following example, the number of concurrent phase one processes is limited to
20 and the number of phase two processes is limited to 100:

max_phase1_procs = 20; -- maximum number of helper sort processes
max_phase2_procs = 100; -- maximum number of helper merge processes

The max files parameter gives the upper bound of sorted input files that each of the
merge processes may read. This number must be less than the number of open file
descriptors that the operating system allows per process. The following example limits
this number to 100 open input files:

max_files = 100; -- maximum number of input sort streams per process

The stream buffer size parameter is used to supply the value to be used as the
size of the stream buffers. The following example sets the size of the stream buffers
used to read and write application data and sort work files to 40 kilo-bytes:

stream_buffer_size = 40000; --- stream buffer size

The sortwork parameter is used to provide the path where PPMSORT places its work
files. Ordinarily, unless the verbose option is used, the work files are removed as the
sort progresses. The names of the files are designed not to interfere with one another by
including the process id and a sequence number as part of the file name. For example,
the file name sortwork 00021121 00000000 is the first work file to be used by
the sort initiated by the driving process ppmsort with PID 21121.

The following parameter indicates that /tmp should be used for the work files:

sortwork = "/tmp"; -- location of temporary sort work files

The following is a full configuration file example:

-- options verbose;
-- options stable, ascii_as_ebcdic;

options stable;
phase1 = "/home/stephen/bin/ppmsqsort";
phase2 = "/home/stephen/bin/ppmsmerge";

-- license = "9312975875F523A17A8B09E8E7E09EF4"; /* license key */
max_records = 100000; -- maximum number of records per partition
max_bytes = 40000000; -- maximum number of bytes per partition
max_phase1_procs = 20; -- maximum number of helper sort processes
max_phase2_procs = 100; -- maximum number of helper merge processes
max_files = 100; -- maximum number of input sort streams per process

Code Magus Limited 8 CML00003-01

3 COMMAND LINE ARGUMENTS

sortwork = "/tmp"; -- location of temporary sort work files

3 Command Line Arguments

All the configuration file parameters can be overridden or supplied as command line
arguments. The only exceptions are the license key parameter and the phase one and
phase two component paths and names.

Additionally, the sort requirements such as sort key specification, input and output file
attributes are exclusively supplied using command line arguments.

3.1 Configuration File Parameters

Command line arguments can be used to override the resource bounds which may or
may not have been supplied in a configuration file. The following command line ar-
guments supply or override the indicated resource bound value from the configuration
file.

• --max-records or -p:
This command line argument overrides the max records configuration file pa-
rameter; or supplies a value in the absence of a configuration file setting for this
parameter. This value is used to limit the number of records that a phase one
process should sort.

• --max-bytes or -b:
This command line argument overrides the max bytes configuration file pa-
rameter; or supplies a value in the absence of a configuration file setting for this
parameter. This value is used to limit the number of bytes that a phase one process
should sort.

• --max-qsort-procs or -q:
This command line argument overrides the max phase1 procs configuration
file parameter; or supplies a value in the absence of a configuration file setting for
this parameter. This value is used as a bound to the number of concurrent phase
one processes.

• --max-merge-procs or -m:
This command line argument overrides the max phase2 procs configuration
file parameter; or supplies a value in the absence of a configuration file setting for
this parameter. This value is used as a bound to the number of concurrent phase
two processes.

• --stream-buffer-size or -s:
This command line argument overrides the stream buffer size configura-

Code Magus Limited 9 CML00003-01

3.2 Configuration File Options 3 COMMAND LINE ARGUMENTS

tion file parameter; or supplies a value in the absence of a configuration file setting
for this parameter. This value is used as a bound to the number of concurrent phase
two processes.

• --max-files or -f:
This command line argument overrides the max files configuration file pa-
rameter; or supplies a value in the absence of a configuration file setting for this
parameter. This value is used as a bound to the number of open files that a phase
two process can have open.

• --sort-work-file-path or -w:
This command line argument overrides the sortwork configuration file param-
eter; or supplies a value in the absence of a configuration file setting for this pa-
rameter. The value is used as the location where the current instance of PPMSORT
will place intermediate sort work files.

The following command line arguments also pertain to resources, but not in the same
manner as the resource bound command line arguments. Instead, these command line
arguments adjust the relative priority of the driver process and that of the phase pro-
cesses. The have the effect of reducing the CPU resource consumption rate in the pres-
ence of work with a higher relative priority.

• --driver-nice or -n
Set the driver process relative priority using the supplied value as a parameter to
the nice(2) system call. This command line argument overrides the value of
the driver nice configuration file parameter.

• --qsort-nice or -a
Set the phase 1 process relative priority using the supplied value as a parameter
to the nice(2) system call. This command line argument overrides the value of
the phase1 nice configuration file parameter.

• --merge-nice or -c
Set the phase 2 process relative priority using the supplied value as a parameter
to the nice(2) system call. This command line argument overrides the value of
the phase2 nice configuration file parameter.

3.2 Configuration File Options

Command line arguments can be used to supply certain options which may or may not
have been specified as options in a configuration file. Once an option is supplied the
flag value cannot be negated by, for example, a subsequent command line argument.
The only exception to this is the use of the --quiet command line argument to reset
the verbose option.

Code Magus Limited 10 CML00003-01

3.3 Application Sorting Requirements 3 COMMAND LINE ARGUMENTS

• --stable-sort or -t:
This command line argument flags the same option as stable does in a config-
uration file.

• --ascii-as-ebcdic or -e:
This command line argument flags the same option as ascii as ebcdic does
in a configuration file.

• --verbose or -v:
This command line argument flags the same option as verbose does in a con-
figuration file.

• --quiet or -u:
This command line argument resets the same flag that option verbose sets in
a configuration file. This option is used to negate a configuration file specified
verbose flag.

3.3 Application Sorting Requirements

The input and output file names and attributes and application level sorting requirements
are specified to the sort driving process (ppmsort) as command line arguments. There
is no configuration file alternative for these command line arguments as the values could
be specific for each usage of the PPMSORT utility.

• --input-file-name or -i:
This command line argument supplies the name of the unsorted input file.

• --output-file-name or -o:
This command line argument supplies the name to which the sorted output data
should be written. The file does not have to exist. If it does it will be overridden
and if it does not it will be created. If the input file is empty then the output file
will still be opened according to the default or supplied output open file mode
parameter. This will have the effect of creating an empty output file (if this is
what is implied by the output open mode parameter) for an empty input file or if
an error should occur before the output phase of the sort.

• --record-length or -l:
This command line argument supplies the record length if the records in the input
file have a fixed length. If the file is a Unix (for example) text based file then this
length needs to take into account the record terminating new line character at the
end of each record.

• --use-rdwio or -d:
This command line argument indicates that the records in the input and output
files are variable in length and that the length of each record is described by a
record descriptor word (the record descriptor word is a four byte entity which

Code Magus Limited 11 CML00003-01

3.3 Application Sorting Requirements 3 COMMAND LINE ARGUMENTS

comprises a two byte big-endian length followed by a two byte low value field;
the length includes the length of the four byte RDW).

• --drop-duplicates or -r:
This command line argument indicates that records with a key value already en-
countered should be dropped as duplicates. Used in conjunction with the --sta-
ble-sort command line argument or the stable configuration file option, the
--drop-duplicates argument will result in the first record with a duplicate
key value to be kept in the output file.

• --sort-key or -k:
This command line argument supplies the application sort key specification. The
syntax and semantics of this field are described below:

SortSpec

- LongFormSortSpec�
�- ShortFormSortSpec

�
�

-

LongFormSortSpec

- sort
�� ��- fields

�� ��- =
����- (

����- ShortFormSortSpec -)
����-

ShortFormSortSpec

- SortKeyList -

The LongFormSortSpec and the ShortFormSortSpec have the same meaning.

SortKeyList

- SortKey�
� ,

�����
�
�

-

SortKey

- Position - ,
����- Length - ,

����- FieldType - ,
����- Direction -

Position

- Number -

Length

- Number -

Code Magus Limited 12 CML00003-01

3.3 Application Sorting Requirements 3 COMMAND LINE ARGUMENTS

FieldType

- CH
�� ���

�- AQ
�� ���- ZD
�� ���- PD
�� ���- FI
�� ���- FIBE
�� ���- FILE
�� ���- BI
�� ���- BIBE
�� ���- BILE
�� ���- CSL
�� ���- LS
�� ���- CST
�� ���- TS
�� ��

�
�
�
�
�
�
�
�
�
�
�
�
�
�

-

Direction

- a
�����

�- A
�����- d
�����- D
����

�
�
�
�

-

The sort key specification comprises a list of fields with sub-fields Position, Length,
and FieldType, together with a Direction indicator of whether the corresponding
record field should be sorted in ascending or descending order. Each such group
sub-field of the sort key specifies the major key items starting on the left, possibly,
followed by the key to be sorted within duplicates of the keys specified to its left;

Code Magus Limited 13 CML00003-01

3.3 Application Sorting Requirements 3 COMMAND LINE ARGUMENTS

with each item corresponding to a record field.

The Position sub-field indicates the first byte position containing the sort field
being described. This is the position of the data within the record where the first
position is one. RDW prefixes are not counted as part of the data (hence the first
byte of a variable length record also has a position of one).

The Length sub-field indicates the length in bytes of the record field being de-
scribed.

The FieldType sub-field describes the type of the corresponding record field. The
type field keywords can be specified in either upper or lower case and have the
following definitions:

CH: Character data. The record field is assumed to be an alphanumeric character
field. The ordering of the data within these fields is lexicographical within
the ASCII or EBCDIC collating sequences.

If all character data is to be ordered according to the EBCDIC collating se-
quence, then the ascii as ebcdic configuration file option or the --as-
cii-as-ebcdic command line argument should be used.

AQ: Alternate collating sequence character data. The behaviour of sorting on this
field is the same as on CH except that when FieldType is AQ the data is inter-
preted as being in the ASCII collating sequence as 7-bit data. The high order
bit is still used to sort the data, but when the data is to be ordered according
to the EBCDIC collating sequence then only the byte values below 128 are
translated to the corresponding EBCDIC values. All other byte values retain
their value. Note that in this case the use of AQ causes multiple mappings to
the same value in the collating sequence.

If all character data is to be ordered according to the EBCDIC collating se-
quence, then the ascii as ebcdic configuration file option or the --as-
cii-as-ebcdic command line argument should be used.

ZD: Zoned decimal. The data is expected to be numeric character data where the
sign of the number is over-punched into the last (right-most) digit position.
For ASCII based numeric character data a negative sign is indicated by all
the 0x70 bits being on in the high order nibble of the byte. Positive numbers
are indicated by the absence of a sign in the high-order nibble (i.e. the high-
order nibble should only have the 0x30 bits on).

PD: Signed packed decimal. The data is expected to comprise of decimal dig-
its, two per byte. The values corresponding to the decimal digits are the
hexadecimal values 0x0 to 0x9. A sign is expected to occupy the low-order
nibble of the last byte. A sign position value of 0xF or 0xC indicates a
positive number, all other values are treated as negative sign values.

Code Magus Limited 14 CML00003-01

3.3 Application Sorting Requirements 3 COMMAND LINE ARGUMENTS

FI: Signed binary. The data is expected to represent a numeric item as a signed
binary number. The endian-ness of the number is determined by the archi-
tecture of the host machine.

FIBE: Signed binary. The data is expected to represent a numeric item as a signed
binary number. This number is represented in a big-endian byte order (most
significant byte first), and not in a byte order determined by the architecture
of the host machine.

FILE: Signed binary. The data is expected to represent a numeric item as a signed
binary number. This number is represented in a little-endian byte order (least
significant byte first), and not in a byte order determined by the architecture
of the host machine.

BI: Unsigned binary. The data is expected to represent a numeric item as an
unsigned binary number. The endian-ness of the number is determined by
the architecture of the host machine.

BIBE: Unsigned binary. The data is expected to represent a numeric item as an
unsigned binary number. This number is represented in a big-endian byte
order (most significant byte first), and not in a byte order determined by the
architecture of the host machine.

BILE: Unsigned binary. The data is expected to represent a numeric item as an
unsigned binary number. This number is represented in a little-endian byte
order (least significant byte first), and not in a byte order determined by the
architecture of the host machine.

CSL or LS: Sign leading separate. The data is expected to comprise of numeric data
with a leading character sign. If the leading character is a minus sign then
the number is treated as a negative number. All other signs result in the
number being treating as a positive number.

CST or TS: Sign trailing separate. The data is expected to comprise of numeric data with
a trailing sign character. If the trailing character is a minus sign then the
number is treated as negative number. All other signs result in the number
being treated as a positive number.

The Direction sub-field indicates whether or not that portion of the record key
should be sorted within the file (for the major key or first record key field), or
the record key should be sorted within the duplicates of the major portions of
the record key (for minor or subsequent record key fields) in an ascending or
descending key sequence manner. The characters A or a indicate that the portion
of the key should be sorted in an ascending sequence; whilst the characters D or
d indicate that the portion of the key should be sorted in a descending sequence.

Code Magus Limited 15 CML00003-01

4 SORT EXAMPLES

4 Sort Examples

4.1 Sorting ASCII Print Data

Given the following contents (assumed to be in the sortchars.dat) containing
ASCII text data:

MMMMMMMMMM 00000000
%%%%%%%%%% 00000001
UUUUUUUUUU 00000002
CCCCCCCCCC 00000003
8888888888 00000004
rrrrrrrrrr 00000005
8888888888 00000006
XXXXXXXXXX 00000007
iiiiiiiiii 00000008
BBBBBBBBBB 00000009
%%%%%%%%%% 00000010
pppppppppp 00000011
KKKKKKKKKK 00000012
oooooooooo 00000013
&&&&&&&&&& 00000014
((((((((((00000015
ffffffffff 00000016
uuuuuuuuuu 00000017
gggggggggg 00000018
dddddddddd 00000019

The following command sorts the file using the ten characters at the front of each record:

[stephen@nomad sorttest]$ ppmsort --input-file-name=sortchars.dat \
--output-file-name=sortchars.txt \
--record-length=20 \
--sort-key="SORT FIELDS=(1,10,CH,A)"

The output of the sort includes a summary report of the processing:

[ppmsort] $Id: ppmsort.c,v 1.23 2010/04/07 18:50:42 hayward Exp $
Copyright (c) 2007 by Code Magus Limited. All rights reserved.
mailto:stephen@codemagus.com, http://www.codemagus.com.
Total bytes input to sort process = 400.
Total records input to sort process = 20.
Total bytes output from sort process = 400.
Total records output from sort process = 20.

The output file of this command is:

%%%%%%%%%% 00000001
%%%%%%%%%% 00000010
&&&&&&&&&& 00000014
((((((((((00000015
8888888888 00000004
8888888888 00000006

Code Magus Limited 16 CML00003-01

4.2 Dropping Duplicates 4 SORT EXAMPLES

BBBBBBBBBB 00000009
CCCCCCCCCC 00000003
KKKKKKKKKK 00000012
MMMMMMMMMM 00000000
UUUUUUUUUU 00000002
XXXXXXXXXX 00000007
dddddddddd 00000019
ffffffffff 00000016
gggggggggg 00000018
iiiiiiiiii 00000008
oooooooooo 00000013
pppppppppp 00000011
rrrrrrrrrr 00000005
uuuuuuuuuu 00000017

In this example the collating sequence is clearly visible as ASCII. This can be seen
in that the special characters (at least the ones shown), precede the numerics, which
precede the upper case characters, which precede the lower case characters.

4.2 Dropping Duplicates

The following command includes the --drop-duplicates:

[stephen@nomad sorttest]$ ppmsort --input-file-name=sortchars.dat \
--output-file-name=sortchars.txt \
--record-length=20 \
--sort-key="SORT FIELDS=(1,10,CH,A)" \
--drop-duplicates

This produces the summary report:

[ppmsort] $Id: ppmsort.c,v 1.23 2010/04/07 18:50:42 hayward Exp $ "
Copyright (c) 2007 by Code Magus Limited. All rights reserved.
mailto:stephen@codemagus.com, http://www.codemagus.com.
Total bytes input to sort process = 400.
Total records input to sort process = 20.
Total bytes output from sort process = 360.
Total records output from sort process = 18.
Total duplicate output records dropped = 2.

The output file now excludes records where the composite sort key value is duplicated:

%%%%%%%%%% 00000001
&&&&&&&&&& 00000014
((((((((((00000015
8888888888 00000004
BBBBBBBBBB 00000009
CCCCCCCCCC 00000003
KKKKKKKKKK 00000012
MMMMMMMMMM 00000000
UUUUUUUUUU 00000002
XXXXXXXXXX 00000007

Code Magus Limited 17 CML00003-01

4.3 Sorting ASCII Data in an EBCDIC Sequence 4 SORT EXAMPLES

dddddddddd 00000019
ffffffffff 00000016
gggggggggg 00000018
iiiiiiiiii 00000008
oooooooooo 00000013
pppppppppp 00000011
rrrrrrrrrr 00000005
uuuuuuuuuu 00000017

4.3 Sorting ASCII Data in an EBCDIC Sequence

The following command illustrates how ASCII (or ISO-8) data can be sorted as though
it is ordered in the sequence of EBCDIC characters.

[stephen@nomad sorttest]$ ppmsort --input-file-name=sortchars.dat \
--output-file-name=sortchars.txt \
--record-length=20 \
--sort-key="SORT FIELDS=(1,10,CH,A)" \
--ascii-as-ebcdic

The output file can be seen as adhering to an EBCDIC collating sequence in which the
special characters (shown) precede the lower-case characters, which precede the upper-
case characters and which precede the numeric characters.

((((((((((00000015
&&&&&&&&&& 00000014
%%%%%%%%%% 00000001
%%%%%%%%%% 00000010
dddddddddd 00000019
ffffffffff 00000016
gggggggggg 00000018
iiiiiiiiii 00000008
oooooooooo 00000013
pppppppppp 00000011
rrrrrrrrrr 00000005
uuuuuuuuuu 00000017
BBBBBBBBBB 00000009
CCCCCCCCCC 00000003
KKKKKKKKKK 00000012
MMMMMMMMMM 00000000
UUUUUUUUUU 00000002
XXXXXXXXXX 00000007
8888888888 00000004
8888888888 00000006

Code Magus Limited 18 CML00003-01

	1 Introduction
	2 Configuration File
	2.1 Configuration File Location
	2.2 Configuration File Settings

	3 Command Line Arguments
	3.1 Configuration File Parameters
	3.2 Configuration File Options
	3.3 Application Sorting Requirements

	4 Sort Examples
	4.1 Sorting ASCII Print Data
	4.2 Dropping Duplicates
	4.3 Sorting ASCII Data in an EBCDIC Sequence

