QCodeMagus

orkhestra: Configuration and User Reference
Version 3

CMLO00041-03

Code Magus Limited (England reg. no. 4024745)
Number 6, 69 Woodstock Road
Oxford, OX2 6EY, United Kingdom
www.codemagus .com
Copyright (©) 2014 — 2024 by Code Magus Limited
All rights reserved

6 CodeMagus June 30, 2025

CONTENTS

CONTENTS

Contents

1 Introduction
1.1 Overview

2 Environmental Variables

3 Configuration

3.1 Command interface
3.2 Command Elements
Comments
Reserved Words
Identifiers
Strings
Filenames
Integers
Environment Variables
3.3 Command Syntax and Semantics

General Command Syntax
Command Options
Alter Command
Cancel Command
Close Command

Define Command
Display command

3.2.1
322
323
324
3.25
3.2.6
3.2.7

3.3.1
332
333
334
335
3.3.6
3.3.7
3.3.8
339
3.3.10
3.3.11
3.3.12
3.3.13
3.3.14
3.3.15
3.3.16
3.3.17
3.3.18

4 orkhestra orkemd command line interface

Exit Command

Flush Command

Help Command

Load Command
Mark Command
Open Command
Set and Reset Commands
Shutdown Command

Start Command
Stop Command

Switch Command

5 Dashboard Metrics

5.1 Introduction
5.2 Elements
Comments
Reserved Words
Identifiers
Strings
Integers

5.2.1
522
5.23
524
525

Code Magus Limited

CML00041-03

CONTENTS

CONTENTS

5.3 Metric Definition

6 State Machine definition

6.1 Introduction
6.2 Elements
6.2.1 Comments
6.2.2 ReservedWords
6.2.3 Identifiers
6.24 Strings
6.25 Integers
6.3 Machine Definition
6.3.1 Preamble
6.3.2 Declarations
6.3.3 State Definition
6.4 Internal Functions
6.4.1 Choose Function
6.4.2 Start Timer Function
6.4.3 Cancel Timer Function
6.4.4 Start Machine Function

7 Remote Control Programs

7.1 Overview
7.2 Clock Synchronisation
73 Local Agent
7.3.1 Operation
732 Shutdown
7.3.3 Error Shutdown
74 Remote Agent
7.4.1 Synopsis
742 Operation
743 Shutdown
7.4.4 Error Shutdown

8 Agent Configuration File

8.1 Elements
8.1.1 Comments
8.1.2 ReservedWords
8.1.3 Identifiers
814 Strings
8.1.5 Environment Variables
8.2 Syntax and Semantics L.
8.2.1 Remote Agent definition

A Sample State machine: orksample.mch

Code Magus Limited 2

CML00041-03

CONTENTS CONTENTS

B Sample Agent Configuration File: orkhestra agent.cfg 77

Code Magus Limited 3 CML00041-03

1 INTRODUCTION

1 Introduction

1.1 Overview

orkhestra loads a defined external protocol control program and interacts with it (Refer
to orkhestra: Control Program API Reference Version 1[1]) under the control of a State
Machine (see section 6 on page 47), during which it accumulates or records metrics
about the complete process. It also implements a command interface through which the
metrics and definitions may be viewed or execution of the orkhestra environment may
be dynamically reconfigured.

orkhestra is very well suited, but not limited, to network testing and/or simulation. As
a simplistic example, for a network implementation, when the control program receives
a network transaction, it supplies the relevant input to the State Machine and the State
Machine transitions to a new state. The control program then receives a new output
from the State Machine, and consequently sends a response to the original transaction.
This continues until the state machine reaches a final state or is shut down by command.

Refer to figure 1 on page 4 for an overview of the orkhestra environment.

Orkhestra
Machine Instance Control Program
Control Program
Interface
Control
Program Link

Command
Interface

g

External System

Machine
Definition

Orkhestra
Commands

Figure 1: Main Process Flow of the orkhestra Environment.

Code Magus Limited 4 CML00041-03

2 ENVIRONMENTAL VARIABLES

2 Environmental Variables

The following environmental variables are required by orkhestra:
e CODEMAGUS_HOME

Specify the path for the Codemagus software installation..

Code Magus Limited 5 CML00041-03

3 CONFIGURATION

3 Configuration

The configuration of control programs, state machines and parameters are done via com-
mands to orkhestra. The metrics and definitions may also be viewed or execution of the
orkhestra environment may be dynamically reconfigured via commands. This section
describes the orkhestra command interface and commands.

3.1 Command interface

orkhestra is configured from commands via its command interface. There are various
ways to present commands to the command interface. They are:

e Standard input
When orkhestra is run in the fore ground, the user directly communicates with the
orkhestra command interface via the terminal. Note that if orkhestra is started in
the background immediately; this channel is no longer available; even if orkhestra
is subsequently brought back to the foreground.

e Network
A TCP/IP interface to the orkhestra command port. Note the TCP/IP port
must have been configured (see 3.3.13 on page 35).

Commands entered via TCP/IP via a configured port allows orkhestra to be inter-
acted with from a program or a user at a terminal. Typically, it would be a user
that conducts an orkhestra session directly or indirectly from a workstation. Op-
tions to conduct an orkhestra session from a workstation include via web-browser
(using, for example, orkdbws) or from a command line command. The program
orkcmd is a command line program that will connect to the orkhestra instance
started in the same directory as the orkcmd command was entered (by default),
alternatively orkcmd can be used to connect to a running instance of orkhes-
tra listening on the provided host IP address and configured port number. See
Section refSEC:ORKCMD for further details.

e Command File.
A file containing commands. If an unrecognised input is passed to orkhestra, it
will assume that this could be the name of a file containing commands. It will
attempt to open this file and process it.

e Command Line Parameter
A single command at start up, for example:

orkhestra -c ods_ga_cmd

ods_ga_cmd is a file containing commands for orkhestra.

Code Magus Limited 6 CML00041-03

3.2 Command Elements 3 CONFIGURATION

3.2 Command Elements

The elements of the commands to orkhestra comprise reserved words, identifiers, string
literals, comments and integers. The commands are free format and white spaces have

no grammatical meaning except where they might appear within string literals.

3.2.1 Comments

Comments are introduced by using a hash (‘#’) and continue up to the end of the current

input line.
Examples:

File: xml_ncacrag_ga.cmd
#
ncacrag control program parameters.

#

3.2.2 Reserved Words

Reserved words have a special meaning in terms of directing the parsing of commands.

The reserved words are:

agent all alter at
background cancel class close
cmdinterface cmdparser conn_dbs connect
constant control _program copies copy
dashboard define delay deviation
display distribution echo exception
exit flush group help
input instances instance load

log machine mark maximum
max mean metric_group metric
min mu next on

open options option output
parameter path port quit
refresh repeat_command repeat reset
rule send set shutdown
start state statistics statistic
stats stop switch time
transitions transition value verbose
version weight_distribution weights weight

Table 1: orkhestra reserved words

Code Magus Limited 7

CML00041-03

3.2 Command Elements 3 CONFIGURATION

3.2.3 Identifiers

An Identifier is case sensitive, it starts with a letter which can be followed by any number
of letters, digits or the under-score character.

Examples:

think_time ncacrag_123 RecordStaffArrgmntDet

3.24 Strings

Strings are:

e any sequence of characters (except double quotes and the newline character) en-
closed by double quotes.

e any sequence of characters (except single quotes and the newline character) en-
closed by single quotes.

Strings cannot span source text lines, but they may be concatenated:

Examples:

"GigabitEthernet(0/0 In Octets"
"$Revision: 1.6 $

3.2.5 Filenames
Filename
Identifier
A Filename is usually written as a String but may also be an Identifier. Most importantly
a Filename must conform to any constraints of the underlying file system.

3.2.6 Integers

A Integer consists of a nonempty sequence of decimal digits ‘0’ through ‘9’.

Examples:

Code Magus Limited 8 CML00041-03

3.3 Command Syntax and Semantics 3 CONFIGURATION

1234

3.2.7 Environment Variables

EnvironmentVariable

— $ = { b Identifier -~ } ——

Environment variables are expanded to their value when encountered in command input
text.

3.3 Command Syntax and Semantics

3.3.1 General Command Syntax

Comment
\A ResponseBracketing Command

\A CommandOptions f

Filename

Input to the command processor is either:

o A Comment. The whole line is ignored by the command processor, see subsection
3.2.1 on page 7.

e A Command, optionally followed by command options.

o A Filename. If the input is not recognised, the command processor will assumed
that this could be the name of a file containing commands, it will attempt to open
this file and process it.

ResponseBracketing

— BracketName »@—»

BracketName can be any character except the ‘>’ character. The response to the orkhes-
tra command will be preceded by ‘.begin BracketName; and followed by a new-
line and ‘.end BracketName; .

Example:
Display a machine value with BracketName ‘Disp think_time’:

Code Magus Limited 9 CML00041-03

3.3 Command Syntax and Semantics 3 CONFIGURATION

Disp think_time> display value think_time (machine (posdev) group (auths))

.begin Disp think_time;
value think_time

(

machine (posdev)

group (auths)

title ("Device Idle time")

description("Time in milliseconds an instance will be in the idle state")

distribution(class (exponential) min(10000) max (3000000) mu(0))
)

.end Disp think_time;

Code Magus Limited 10 CML00041-03

3.3 Command Syntax and Semantics 3 CONFIGURATION

command

Alter

|

L

Cancel

Close

L

Define

N

Display

:

Exit

Flush

Help

Load

Mark

Open

(LT

Open

L

SetReset

Shutdown

H

:

Start

:

Stop

ffffffffffffffff%

|

Switch

All commands can be followed by zero or more of the command options. These options
affect the way in which the command is executed; for example by delaying the command
or causing it to be repeated at intervals.

Code Magus Limited 11 CML00041-03

3.3 Command Syntax and Semantics 3 CONFIGURATION

3.3.2 Command Options

CommandOptions

Delay

Echo

Output

Repeat

Delay

(1 Seconds @—»

Mark

Mark

ldentifier —

Seconds

——! Integer —

Delay the execution of a command by Seconds or delay the execution of a command as
per the time specified in Mark plus Seconds. Refer to 3.3.12 on page 34 for information
about the Mark specification.

Examples:
Start machine bici after 10 seconds:
start machine bici delay (10)

As another example, assume it is required to run a machine and increment the number
of running instances every 5 minutes on a 5 minute boundary. This allows for set time
periods from a specific start point. In the example below the next 5 minute boundary
is calculated using the mark command and associated with the label MT300A. The ma-
chine is altered to a various number of instances at specific time boundaries relative to
the time specified in MT300A.

mark time MT300A next (300

)
alter machine ml (group(gl) instances(100)) delay (MT300A,0)
alter machine ml (group(gl) instances (200)) delay (MT300A,300)
alter machine ml (group(gl) instances(300)) delay (MT300A,600)
alter machine ml (group(gl) instances(400)) delay (MT300A,900)
alter machine ml (group(gl) instances(500)) delay (MT300A,1200)

Code Magus Limited 12 CML00041-03

3.3 Command Syntax and Semantics 3 CONFIGURATION

Echo

OO

Causes the output of the associated command to be preceded with ‘begin_echo=String;’
and ended with ‘{end_echo=String;’, where String is the String specified on the
echo option.

Example:
Display a machine value with echo ‘Disp think_time’:

display value think_time (machine (posdev) group (auths)) echo("Disp think_time")

begin_echo="Disp think_time";
value think_time
(
machine (posdev)
group (auths)
title("Device Idle time")
description("Time in milliseconds an instance will be in the idle state")
distribution(class (exponential) min (10000) max (3000000) mu(0))
)
end_echo="Disp think_time";

Output

(0| Ftnane (7

Redirect the output responses for the associated command to the file specified by File-
name (see subsection 3.2.5 on page 8). If the file exists, the response will be appended
to the file, otherwise the file will be created.

Example:
Write the command response to the file $ { STATSPATH} /tmsods.stats.500.txt.

display statistics machine bsbic group (bsbic) reset (minmax)
repeat (60) output ("${STATSPATH} /bsbiciso_cc.stats.raw")

Repeat

(Or{meser ()

Repeat the command every Integer seconds.

Example:
Write the command response to the file $ { STATSPATH} /tmsods.stats.500.txt
and repeat the command every 30 seconds.

display statistics machine tmsods group (auths) reset (minmax)
output ("${STATSPATH}/tmsods.stats.500.txt")
repeat (30)

Code Magus Limited 13 CML00041-03

3.3 Command Syntax and Semantics 3 CONFIGURATION

3.3.3 Alter Command

The alter command is used to alter machine instances, values and weight distributions.

Machinelnstances -

MachineValueVariables

MachineWeightDistribution

Machinelnstances

—»@a chi ne>—> MachineName @

a ActiveGroupName

(O f s

MachineName

— Ildentifier ——

ActiveGroupName

— Identifier ——

Alter the number of instances:

e For a defined machine, this is the number of instances to start when starting this
machine.

e For an active group, dynamically alter the instances in this group.

If the number of machines is altered to zero, then the machine is effectively suspended
and no transition metrics are generated.

Examples:
e Alter the number of instances for the defined machine posdev to 100:

alter machine posdev (instances (100))
Response: Machine posdev instances changed from 1 to 100;

Code Magus Limited 14 CML00041-03

3.3 Command Syntax and Semantics 3 CONFIGURATION

e Alter the number of instances for the active machine posdev, group auths to
222:

alter machine posdev (group (auths) instances (222))
Response: Machine posdev group (auths) instances changed from 100 to 222;

MachineValueVariables

—Galue}—» ValueName 0 0 MachineName

0 ActiveGroupName

Constant @—»

ExponentialDistribution

GaussianDistribution

UniformDistribution

MachineName

—— Identifier ——

ActiveGroupName

ldentifier —

ValueName

— Ildentifier ——

Alter the parameters of a machines value variable:
e For a defined machine, this is what a machine will be starting with.
e For an active group, dynamically alter the parameters of the value.

A value is used by the State Machine for the start_timer() function, and can have be any
one of the following:

o Constant

Code Magus Limited 15 CML00041-03

3.3 Command Syntax and Semantics 3 CONFIGURATION

(O {meser |

A (Constant) is specified in milliseconds.

Example:

Alter the value of think_t ime for the active machine posdev, group auths
to 5 seconds:

alter value think_time (machine (posdev) group (auths) constant (5000))
value think_time

(

machine (posdev)

group (auths)
title("Device Idle time")

description("Time in milliseconds an instance will be in the idle state")
constant (5000)

)i

e ExponentialDistribution

—»@istribution 0 0 exponential)——@—)

@ 0 Integer 0 @ 0 Integer

Integer @—@—»
Example:

Alter the value of think_t ime for the active machine posdev, group auths
to a exponential distribution:

alter value think_time (machine (posdev) distribution(class (exponential)
min (10000) max (3000000) mu(100000)))
value think_time
(
machine (posdev)
title("Device Idle time")
description("Time in milliseconds an instance will be in the idle state")
distribution(class (exponential) min (10000) max (3000000) mu(100000))
)i

o GaussianDistribution

Code Magus Limited 16 CMLO00041-03

3.3 Command Syntax and Semantics 3 CONFIGURATION

gaussian

(O-{meser 7 (O meser {00

Example:

Alter the value of think _time for the active machine posdev, group auths
to a gaussian distribution:

alter value think_time (machine (posdev) distribution(class (gaussian)
mean (10000) deviation (2000)))
value think_time
(
machine (posdev)
title ("Device Idle time")
description("Time in milliseconds an instance will be in the idle state")
distribution(class(gaussian) mean(10000) deviation (2000))

)i

e UniformDistribution

@ ‘ Integer 0 @ 0 Integer »@——@—»

Example:

Alter the value of think_time for the active machine posdev, group auths
to a uniform distribution:

alter value think_time (machine (posdev) distribution (
class (uniform) min(90000) max (110000)))
value think_time
(
machine (posdev)
title("Device Idle time")
description("Time in milliseconds an instance will be in the idle state")
distribution(class (uniform) min (90000) max(110000))
)

Code Magus Limited 17 CMLO00041-03

3.3 Command Syntax and Semantics 3 CONFIGURATION

MachineWeightDistribution

—»@e ight_distributi orD—» WeightDistributionName D

0 machine 0 MachineName

(

ActiveGroupName

(reianee) (0

IDENTIFIER |-{ () OO~~~

MachineName

— Identifier ——

ActiveGroupName

— Ildentifier —

WeightDistributionName

— Ildentifier ——

Alter the parameters of a machine’s machine weight distribution:
e For a defined machine, this is what a machine will be starting with.
e For an active group, dynamically alter the parameters of the weight distribution.

A weight distribution is used by the State Machine for the choose () function.

Example:
Alter the weight distribution what_transaction for the active machine posdev,
group auths:

alter weight_distribution what_transaction (machine (posdev) group (auths)
weights (credit_card(4)debit_card(l)))
weight_distribution what_transaction
(
machine (posdev)
group (auths)

Code Magus Limited 18 CML00041-03

3.3 Command Syntax and Semantics 3 CONFIGURATION

title("Transaction profile")

description("Ratio between the various transactions")

weight (logon_only (0) credit_card(4) debit_card(l) download_bin (0)
download_new_hotcard(0) download_software(0))

)i

3.3.4 Cancel Command

—»Ccancel repeat,commanoD—» Integer ——

Cancel a repeat command. The number of the command to cancel can be found by
displaying the repeat commands (see section 3.3.7 on page 22).

Example:
Firstly display all the repeat commands and then delete the repeat of display control_program:

display repeat_command

Response: 1: display instances (machine (posdev) group (auths) repeat (10)
output ("testl.txt");
Response: 2: display control_program all repeat (11);

cancel repeat_command 2
Response: Repeat command number 2 deleted;

3.3.5 Close Command

close

verbose

Close the current open log or verbose file.

Example:
Close the current log file:

close log
Response: Closed output log file;

3.3.6 Define Command

This command is used for:

e Defining a agent.

Code Magus Limited 19 CML00041-03

3.3 Command Syntax and Semantics 3 CONFIGURATION

%efin%%ng@j
¢

parameter

o

Define a agent for running control programs remotely, see section 3.3.6 on page
19.

path is optional and is the agent program name. This name can be specified as
a fully qualified path or just the name, in which case the environment variable
CODEMAGUS_HOME will be used to determinate the path. If path is not specified,
the agent program name defaults to orkagent 1. The parameter will be passed
to the control program via the command line when it is invoked.

Example:
define an agent with a fully qualified path name:

define agent (
path ("${HOME}/bin/orkagentl")
parameter (
" Y n
"—-—config=${SCRIPTS}/lagent.cfg "
)
)

e Defining a control program.

Code Magus Limited 20 CML00041-03

3.3 Command Syntax and Semantics 3 CONFIGURATION

—»@efine}—{cont rol,progra@—» Identifier

O e

parameter

(O s

ControlProgramName

— Ildentifier ——

Define a orkhestra control program for processing the outputs from a State Ma-
chine and sending inputs to a State Machine.

copies is the number of instances to start when the control program is activated.
the default is one copy. The parameter will be passed to the control program
via the command line when it is invoked. path is the fully qualified name of the
control program.

Example:
Define control program posdev, to be started with two copies:

define control_program posdev (
copies (2)
path ("${HOME}/bin/posdcp")
parameter (
"—-host-addr-file=${CONFIGS}/test_pos_host.txt "
"——objtype=${POSFORMATS}/objtypes/pos_device.objtypes "
"—-mtemplate=${POSTEST}/logs/pos_device_msg.bin "
"——merchant=${POSTEST}/scripts/merchants_ga.csv "
"——pcard=${CONFIGS}/test_plastics.txt "
"—-—hsm-port=7171 —--hsm-name=10.57.24.23 "
"——log=${LOGSPATH} /posdcp ")

Code Magus Limited 21 CML00041-03

3.3 Command Syntax and Semantics 3 CONFIGURATION

)

Response: Control program posdev defined;

3.3.7 Display command

DisplayAgent e

DisplayControlProgram —

DisplayDashboard I

DisplayExit]

Displaylnstances I

DisplayMachine R

DisplayMetric —

DisplayOptions —

DisplayRepeatCommand I

\

DisplayState
DisplayStatistics I

Displayvalue]

L L L L L L

DisplayWeightDistribution

DisplayAgent

Display the definition and status of a orkhestra control program agent.

Example:

display agent

agent lagent
(
Copies(l) status(inactive)
path("../orkagentl")
Parameter (

Code Magus Limited 22 CML00041-03

3.3 Command Syntax and Semantics 3 CONFIGURATION

n -V n
"——config=${SCRIPTS}/lagent.cfg ")
)

DisplayControlProgram

display control_program cpname

cpname

— Ildentifier ——

Display the definition and status of a control program.

Example:
Display the definition and status of the control program posdev:

display control_program posdev
control_program posdev
(
copies (1) status(active) pid(3662)
path ("/home/jan/bin/posdcp")
parameter (
"—-host-addr-file=/home/jan/serfboard/test_configs/test_pos_host.txt "
"——objtype=/home/jan/CodeMagus/POSFormats/objtypes/pos_device.objtypes "
"——mtemplate=/home/jan/CodeMagus/POSTest/tdata/logs/pos_device_msg.bin"
"——merchant=/home/jan/CodeMagus/POSTest/tdata/scripts/merchants_ga.csv"
"-—pcard=/home/jan/serfboard/test_configs/test_plastics.txt "
"——hsm-port=7171 "
"—-hsm-name=10.57.24.23 "
"-—log=/home/jan/test_pos/logs/posdcp ")
)i

DisplayExit

Displays exception exit conditions in orkhestra.

Example:
Display the defined exit conditions:

display exit
exit exception (machine=posdev) ;
exit exception (control_program=posdev) ;

DisplayDashboard

display dashboard

Displays the DashBoard connection status, for example:

Code Magus Limited 23 CML00041-03

3.3 Command Syntax and Semantics 3 CONFIGURATION

display dashboard
Response: Connected IP: 127.0.0.1 port: 62345;

Displaylnstances

—»@i spla@—» INSTANCES U

0 machine “ MachineName

(O Grmptane (-

Display a snap shot of the number of instances within the various states of an active
machine, for example:

display instances (machine (posdev) group (auths))
instances 200
(
machine (posdev) group (auths)
device_idle (173)
ready_for_transacting (19)
send_cc_completion (8)

)i

DisplayMachine

display

MachineName -

(O Grpton

all

Display the definition and status of a State Machine.

Examples:

e Display the definition and status of the State Machine posdev:

display machine posdev

machine posdev

(

Code Magus Limited 24 CML00041-03

3.3 Command Syntax and Semantics 3 CONFIGURATION

status (default)
instances (1)
control_program(posdev)
initial_state(startup)
target ("Stratus")
creator ("Jan Vlok")
modified ("Jan Vlok")
date (2008-01-16T10:51:18)
notes ("None")
description ("POS stress")
value timeout_value
(
title ("Response time out")
description("Time in milliseconds to wait for a response message")
constant (10000)
)
weight_distribution what_transaction
(
title("Transaction profile")
description ("Ratio between the various transactions")
weight (logon_only (0) credit_card(l) debit_card(l) download_bin (0)
download_new_hotcard(0) download_software(0))

)

)i

e Display the status of the active State Machine posdev, group auths:

display machine posdev group (auths)
machine posdev
(
group (auths) status (active)
instances (100)
control_program(posdev)
initial_state(startup)
value timeout_value
(
title ("Response time out")
description("Time in milliseconds to wait for a response message")
constant (10000)
)
weight_distribution what_transaction
(
title("Transaction profile")
description ("Ratio between the various transactions")
weight (logon_only (0) credit_card(l) debit_card(l) download_bin (0)
download_new_hotcard(0) download_software(0))

)

Code Magus Limited 25 CMLO00041-03

3.3 Command Syntax and Semantics 3 CONFIGURATION

)i

DisplayMetric

display

MetricName @
metric._gr oup}—»@—» MetricGroupName

all

MetricName

— Ildentifier ——

MetricGroupName

— Ildentifier ——

This command displays information about metrics that may be sent to a DashBoard. 1t
displays the full metric definition and status when the request is for a named metric, for
all and metric_group a brief summary of the metrics are displayed. A metric destined
for a DashBoard can have one of three states:

1. Active. The named metric is being generated and sent to the DashBoard.

2. Queued. The metric is defined, but not being sent to the DashBoard; possibly
because the DashBoard is not running yet and can not be connected to.

3. Not specified. This is the default when the status keyword is omitted. The
metric is defined in orkhestra but not requested to be sent to the DashBoard.

Examples:
e Display the DashBoard metric Timeouts:

display metric Timeouts
metric Timeouts
(
group (Test_POS)
refresh (10)
machine (posdev)
title ("Request timeouts")
description ("Request timeouts")
type (count)
sum
(
wait_logon_reply.timer_expire (msg_timed_out),
retry_ 1 wait_logon_reply.timer_expire (msg_timed_out),

Code Magus Limited 26 CML00041-03

3.3 Command Syntax and Semantics 3 CONFIGURATION

retry_2_wait_logon_reply.timer_expire (msg_timed_out),
retry_3_wait_logon_reply.timer_expire (msg_timed_ out),
wait_cc_auth_reply.timer_expire (msg_timed_out),
wailt_cc_confirmation.timer_ expire (msg_timed_out),
wait_db_ses_key_reply.timer_expire (msg_timed_out),
wait_db_auth_reply.timer_ expire (msg_timed_out),
wait_db_confirmation.timer_expire (msg_timed_out)
)

)i

e Display all the defined DashBoard metrics:

display metric all

metric Sessions (group (Test_POS)
title("Sessions offered")
)

metric Connection_Retry_1 (group (Test_POS)
title("First connection retry")
status (Queued)
)i

metric Timeouts (group (Test_POS)
title ("Request timeouts")
status (Active)

)i
e Display all the metrics belonging to the group Test POS:

display metric_group Test_POS
Metric group Test_POS:
Connection_Retries
is "Connection retries"
Error_disconnect
is "Unexpected circuit disconnects”
Timeouts
is "Request timeouts"

4

DisplayOptions

Display orkhestra verbose output settings for example:

display options
verbose:
exceptions OFF

Code Magus Limited 27 CMLO00041-03

3.3 Command Syntax and Semantics 3 CONFIGURATION

DisplayRepeat

display repeat,commanoD J -
1 Integer

Display the current active repeat commands for example:

display repeat_command

Response: 1: display instances (machine (posdev) group (auths) repeat (10)
output ("testl.txt");

Response: 2: display control_program all repeat (240);

DisplayState

display state

StateName

all

© (O {tachineione |77

StateName

— Identifier —

MachineName

— Ildentifier ——

Display the state definitions of a State Machine.

Example:
Display the state definition of wait _dwnload packet_reply of the defined State
Machine posdev:

display state wait_dwnload_packet_reply (machine (posdev))

state=wait_dwnload_packet_reply
Input=POS_REMOTE_DWNLOAD_PACKET_REPLY
Action=cancel_timer (msg_timed_out)
Action=start_timer (ready_to_send, sw_down_latency)

To state=send_dwnload_packet_request

7

state=wait_dwnload_packet_reply
Input=POS_REMOTE_DWNLOAD_PACKET_REPLY_LAST
Action=cancel_timer (msg_timed_out)
Action=start_timer (ok_to_disconnect, disconnect_delay)

To state=do_disconnect

Code Magus Limited 28 CML00041-03

3.3 Command Syntax and Semantics 3 CONFIGURATION

14

state=wait_dwnload_packet_reply
Input=disconnect
Action=cancel_timer (msg_timed_out)
Action=start_timer (device_ready, think_time)

To state=device_idle

’

state=wait_dwnload_packet_reply
Input=timer_expire (msg_timed_out)
Action=start_timer (ready_to_send, sw_down_latency)

To state=send_dwnload_packet_request

4

DisplayStatistics

display statistics machine

Q MachineName »@roup}—»@—» ActiveGroupName

0 StateName

O-{ i

MachineName

— Identifier ——

ActiveGroupName

— Ildentifier —

Code Magus Limited 29 CML00041-03

3.3 Command Syntax and Semantics 3 CONFIGURATION

StateName

— Identifier ——

InputName

— Identifier -

Identifier

Display the transition metrics for an active machine. If state and input are omitted,
all the metrics for the machine will be displayed. If reset of minmax is requested, the
minimum and maximum metrics will be reset.

Example:
Write all the metrics for an active machine to a file every sixty seconds:

display machine posdev group (auths) reset (minmax) \
repeat (60) output ("${HOME}/card/combine/x25_auth.stats.txt")

Display metrics for a specific transition, every 30 seconds.

display statistics machine tmsods group(auths) state (device_idle)
input (timer_expire (device_ready)) repeat (30)

Response:

statistic machine=amsods group=a instances=200 time=1157601808.642343
elapsed=17.863820
{state=device_idle input=timer_expire (device_ready)
count=12 sum_response=168673 sg_response=2388681423 min=11585.028
max=15996.190}

Code Magus Limited 30 CML00041-03

3.3 Command Syntax and Semantics 3 CONFIGURATION

DisplayValue

display value>—> ValueName

machine 0 MachineName

0 ActiveGroupName

MachineName

7

— Identifier ——

ActiveGroupName

— Ildentifier ——

ValueName

— Ildentifier ——

Display a value variable of a State Machine.

Example:
Display the value of cc_auth_r_latency defined in the active State Machine posdev,
group auths:

display value cc_auth_r_latency (machine (posdev) group (auths))
value cc_auth_r_latency
(
machine (posdev)
group (auths)
title ("CC auth reqg latency")
description("Time in milliseconds to delay, before sending a Credit "
"card authorisation request")
distribution(class (uniform) min (1900) max (2400))

)i

Code Magus Limited 31 CML00041-03

3.3 Command Syntax and Semantics 3 CONFIGURATION

DisplayWeightDistribution

display weight_distribut iorD—» WeightDistributionName

machine 0 MachineName

7

0 ActiveGroupName

o

MachineName

— Identifier ——

ActiveGroupName

— Ildentifier ——

WeightDistributionName

— Identifier ——

Display a weight distribution in a State Machine.

Example:
Display the weight distribution what _transaction defined in the active State Ma-
chine posdev, group auths:

display weight_distribution what_transaction (machine (posdev) group (auths))
weight_distribution what_transaction

(

machine (posdev)

group (auths)

title("Transaction profile")

description ("Ratio between the various transactions")

weight (logon_only (0) credit_card(l) debit_card(l) download_bin (0)

download_new_hotcard(0) download_software(0))

)i

Code Magus Limited 32 CML00041-03

3.3 Command Syntax and Semantics 3 CONFIGURATION

3.3.8 Exit Command

(o0 (eceprion

cont rol,progra@—@—» cpname

MachineName

cpname

—— Identifier ——

MachineName

— Ildentifier ——

The three Set exit conditions for orkhestra will do the following:

e exit with no parameters only works during a TCP/IP command session to
orkhestra and will close the session. Orkhestra itself is not affected.

e Using control program will terminate orkhestra when a control program
abnormally terminates.

e Using machine will terminate orkhestra when an active machine instance ab-
normally terminates or a State Machine instance transitions to the final state.

Example:
Terminate orkhestra when either the control program pos or an active instance of ma-
chine pos abnormally terminates:

exit on exception (control_program(pos))
Response: Exit condition set;

exit on exception (machine (pos))
Response: Exit condition set;

3.3.9 Flush Command

(Fruah)(i0)-(reroess)

Forces a write on the file, for example to flush the current log:

flush log

Code Magus Limited 33 CML00041-03

3.3 Command Syntax and Semantics 3 CONFIGURATION

Response: Flushed log file SAMPLE_20080704_0711.log;

3.3.10 Help Command

D) o
\. Command

Help on orkhestra commands.

3.3.11 Load Command

—@»@a chine>—> FileName ——

Load a state machine’s definition from the file specified by FileName.

Example:
Load the State Machine defined in the configuration file pos _device_circuit .mch:

load machine "pos_device_circuit.mch"
Response: Parsing Machine definition file pos_device_circuit.mch;
Response: Machine poscir defined;

3.3.12 Mark Command

—»@—»@ime}—» Mark »@ext}—»@—» Seconds @—»

Mark

— Identifier ——

Seconds

— Integer ——

e Mark is the label associated with a future time that falls on the next time boundary
with modulus seconds.

Example:

e Mark a time in the future that falls on the next 5 minute boundary and associate it
with the label STARTTIME.

Code Magus Limited 34 CML00041-03

3.3 Command Syntax and Semantics 3 CONFIGURATION

mark time STARTTIME next (300)
Response: Mark time STARTTIME at Fri Nov 30 09:50:00 2018 (+285 seconds);

In the above example it can be seen that the next 5 minute boundary was 285
seconds away. See section 3.3.2 on page 12 for an example of using the Mark
command.

3.3.13 Open Command

BaseName

ve rbose>—> Filename

cmdinterface}—»@aort}—» PortNumber

basename

T Identiﬁerj—>
String

For opening:

e An output log file - date, time and ‘.log” will be appended to the BaseName, for
example:

open log orkhestra_pos
Response: Opened output log file;

The log file name will be something like orkhestra_pos_20060925.0933. 1og

e An output verbose file - all the verbose output from orkhestra will be written to
this file.

e A passive TCP/IP connection, on which connections will be accepted for the com-
mand interface of orkhestra.

Example:
Open a command interface that will listen on port 61100 for connections to orkhes-
tra command interface:

open cmdinterface port 61100
Response: Command interface listen on port 61100;

Code Magus Limited 35 CML00041-03

3.3 Command Syntax and Semantics 3 CONFIGURATION

3.3.14 Set and Reset Commands

Gerbose transitions}—»

=3

Set or Reset verbose of all State Machine transitions.

nstances}—» Integer ——

Set the maximum number of instances that may be set.

3.3.15 Shutdown Command

——{ shutdown ——

Terminates orkhestra:

3.3.16 Start Command

control,progra@» cpname
machine}—» MachineName]

o ActiveGroupName 4@—)

()
© OO0

cpname

— Identifier ——

Code Magus Limited 36 CML00041-03

3.3 Command Syntax and Semantics 3 CONFIGURATION

MachineName

E——

Identifier —

ActiveGroupName

—_—

Identifier ——

Start a control program or an active machine. Note if instances are not specified,
the number of instances in the machine definition will be used.

Examples:

Start the control program posdev:

start control_program posdev
Response: Control program posdev started with pid 5697;

Alter the number of instances of the State Machine posdev to 100 and then start
it as active group auths:

alter machine posdev (instances (100))
Response: Machine posdev instances changed from 0 to 100;

start machine posdev group (auths)
Response: Machine posdev.auths started with 100 instances;

3.3.17 Stop Command

cont rol,progra@—» cpname

ma chine>—> MachineName »@rou@—»@—» ActiveGroupName

cpname

R

ldentifier —

MachineName

—

Identifier ——

Stop a agent, control program or an active machine.

Examples:

Stop State Machine posdev, active group auths:

Code Magus Limited 37 CML00041-03

4 ORKHESTRA ORKCMD COMMAND LINE INTERFACE

stop machine posdev group (auths)
delete_mch () : Group posdev.auths stopped
delete_mch () : Group posdev.auths deleted
Response: Machine posdev.auths stopped;

e Stop the control program posdev:

stop control_program posdev

Response: Control program posdev stopped;

cp_terminated(): Control program posdev terminated

orkhestra () : Control program posdev (pid = 5697) exited with code 0

3.3.18 Switch Command

(i) (io9)

Closes the current log file and opens a new one, for example:

switch log
Response: Closed output log file;
Response: Opened output log file;

4 orkhestra orkemd command line interface

It is possible to conduct an orkhestra session using the command-line program orkcmd.
By default the command-line program orkcmd will attempt to connect to the last
orkhestra instance started in the same directory that the orkcmd was started in (the
current working directory). The instance that orkcmd will attempt to connect to can
be overridden by supplying an optional port number and host address as command line
arguments:

stephen@nomad:~/software/orkhestra$ orkcmd --help
Code Magus Limited ORKHESTRA V3.0: build 2020-11-24-10.56.38
[./orkcmd] $Id: orkhestra_commands.tex,v 1.6 2021/06/01 09:49:18 hayward Exp $
Copyright (c) 2009-2020 by Code Magus Limited. All rights reserved.
[Contact: stephen@codemagus.com].
Usage: orkcmd [OPTION...]
-h, ——command-host={127.0.0.1|host—-address} Orkhestra command host address
-p, ——command-port={.orkcmdport |port-number} Orkhestra command port number

Help options:
-7, ——help Show this help message
—-—usage Display brief usage message

Once connected to a running orkhestra instance, the command-line program orkcmd
allows the user to submit commands to the running instance and to have the responses

Code Magus Limited 38 CML00041-03

4 ORKHESTRA ORKCMD COMMAND LINE INTERFACE

to those commands sent back to the user (orkhestra responses are send back asyn-
chronously, making orkcmd useful for repeat and delay command output). Command-
line program orkcmd uses The GNU Readline Library (Brian Fox and Chet Ramey)
and The GNU History Library (Brian Fox and Chet Ramey) (see www.gnu.orqg).
This provides command history to be kept, searched and edited. The program orkcmd
maintains this history in the local directory in the file called . orkcmdhist. The edit-
ing and searching command functionaliy (for example, Cntr1-R) is the same as that
provided by bash (1) and can be customised using the file ${HOME}/ . inputrc.

The following is an example of starting orkhestra and configuring the commnd interface
on port 12345. This is followed by an example of using orkcmd to connect to the
orkhestra instance and entering a command (in this case help):

stephen@nomad:~/software/orkhestra$ orkhestra -c "open cmdinterface port 12345"
Code Magus Limited ORKHESTRA V3.0: build 2020-11-24-10.56.38
[orkhestra] $Id: orkhestra_commands.tex,v 1.6 2021/06/01 09:49:18 hayward Exp $
Copyright (c) 2009-2020 by Code Magus Limited. All rights reserved.
[Contact: stephen@codemagus.com].
refclock () : Code Magus Limited - Reference Clock Synchronisation:
Environmental variable ’'CODEMAGUS_REFCLOCK_SERVER’ is not set!
Local clock of client nomad continuing with unsynchronised clocks

Listening for domain socket connection on /tmp/orkhestraléd684.

Starting /home/stephen/software/build/bin/orkdbs

Code Magus Limited ORKHESTRA V3.0: build 2020-11-24-10.56.38
[/home/stephen/software/build/bin/orkdbs] $Id: orkhestra_commands.tex,v 1.6 2021/06/C

Copyright (c) 2009-2020 by Code Magus Limited. All rights reserved.
[Contact: stephen@codemagus.com].

Okhestra network(): orkdbs pipe connection : Pipe communication ready

Unix domain socket to orkhestra connected

Domain socket Connected from orkdbs.

refclock () : Code Magus Limited - Reference Clock Synchronisation:

Environmental variable ’CODEMAGUS_REFCLOCK_SERVER’ is not set!

Local clock of client nomad continuing with unsynchronised clocks

Response: UDP log interface listen on port 12345 UDP;
Response: Command interface listen on port 12345;

stephen@nomad:~/software/orkhestra$ orkcmd
Code Magus Limited ORKHESTRA V3.0: build 2020-11-24-10.56.38
[./orkcmd] $Id: orkhestra_commands.tex,v 1.6 2021/06/01 09:49:18 hayward Exp $
Copyright (c) 2009-2020 by Code Magus Limited. All rights reserved.
[Contact: stephen@codemagus.com].
Connecting Orkhestra instance: 127.0.0.1:12345
help
help:
[<ResponseBracketing>] <command> [<command options>]

<ResponseBracketing> := BracketName >
BracketName can be any character except the >’ character. The response
to the orkhestra command will be preceded by ’.begin BracketName;’ and

Code Magus Limited 39 CMLO00041-03

4 ORKHESTRA ORKCMD COMMAND LINE INTERFACE

followed by a newline and ’.end BracketName;’
<command options> := [<Delay>] [<Repeat>] [<Output>] [<Echo>]
<Delay> := delay (<seconds>)
| delay (<mark_label>,<offset-seconds>)>)

<seconds> := INTEGER -- a number of seconds to delay before executing the command.
<mark_label> := IDENTIFIER —— an identifier which must name a predefine mark time
<offset-seconds> := INTEGER -- a number of seconds, which be the delay after the n
<Repeat> := repeat (<seconds>)
<seconds> := INTEGER -- a number of seconds between repeating the executing of the
<Output> := output (<file name>)
<file name> := String -- a file name for appending the command output to.
<Echo> := echo (String)

Causes the output of the associated command to be preceded
with ’"begin_echo=String;’and ended with ’end_echo=String’;

try: help {alter|cancel|close|definel|displaylexit|
flush|load|mark|open|reset|set|shutdown|start|stop|switch}

Code Magus Limited 40 CMLO00041-03

5 DASHBOARD METRICS

5 Dashboard Metrics

5.1 Introduction

DashBoard metrics are defined in a configuration file, that only contain the definition
for these metrics. They are loaded into orkhestra using the 1 oad command; see section
3.3.11 on page 34.

These metrics are send to the DashBoard if the following conditions are satisfied:

e The connection to the DashBoard as requested by using the connect command
is established; see section ?? on page ??.

e The State Machine they refer to is active.

e The metric has been queued for sending; see section ?? on page ??.

5.2 Elements

The elements for defining DashBoard metrics comprise reserved words, identifiers,
string literals, comments and integers. The definitions are free format and white spaces
have no grammatical meaning except where they might appear within string literals.

5.2.1 Comments

Comments are introduced in two ways:
e Using double minus sign (‘=") and continue up to the end of the current input line.

e Using the left brace (‘{”) and continue up to and including the next right brace
(‘}’). Comments can span lines and can contain any characters except the right
brace (‘}’). which would end the comment. Consequently, comments cannot be
nested.

Examples:

—-— File: atmams.metric

—— Defining of the common dashboard metrics for the ATM AMS stress test.

Code Magus Limited 41 CML00041-03

5.2 Elements 5 DASHBOARD METRICS

5.2.2 Reserved Words

Reserved words have a special meaning in terms of directing the parsing of commands.The
reserved words are:

description group input instances
list machine metric refresh
state sum title type

Table 2: State Machine reserved words

5.2.3 Identifiers

An Identifier is case sensitive, it starts with a letter which can be followed by any number
of letters, digits or the under-score character.

Examples:
Connected wailt_connection connect
5.2.4 Strings
A String is any sequence of printable (or keyboard) characters enclosed in double quotes.

The enclosing double quote may not appear within the String, neither the newline
character(i.e. strings cannot span source text lines), but they may be concatenated:

Examples:

description ("Before an ATM can start transacting, "
"it must be connected.")

5.2.5 Integers

A Integer consists of a nonempty sequence of decimal digits ‘0’ through ‘9°.
Examples:

1234
0

Code Magus Limited 42 CML00041-03

5.3 Metric Definition 5 DASHBOARD METRICS

5.3 Metric Definition

This section describes the definition of a metric that is to be sent to the DashBoard
server.

To MetricDefinition

MetricDefinition

—»Qnetric)—» MetricName D

Group (~ Refresh ~ Machine —~ Title |~ Description —~ Type 3

Transitionl,istj—@—
Instances

MetricName

— Ildentifier ——

Met ricName identifies the metric.

Group

(O er |47

Assigns the metric to a DashBoard metric group.

Refresh

(reteen) (D mger} (D

Assigns the refresh rate (in seconds) to the metric.

Code Magus Limited 43 CML00041-03

5.3 Metric Definition 5 DASHBOARD METRICS

Machine

‘ MachineName »@—» ActiveGroupName »@—»

MachineName

— Ildentifier ——

ActiveGroupName

Identifier ——

MachineName and Act iveGroupName identifies the State Machine that this metric
belongs to.

Title

OO

Assigns a title to the metric which is formally part of the description of it.

Description

—»@escript ior}»@—» String »@—»

This provides a mechanism for assigning an comment to a metric which is formally part
of the description of it.

Type

0 Identifier »@—»

Defines the metric type.

Instances

0 instances 0

List a snapshot of the requested machine’s instances.

TransitionList

TransitionList »@—»

Transition

— StateName @—t InputName
StateMachineFunctionName @» ldentifier «@—j

Code Magus Limited 44 CML00041-03

5.3 Metric Definition 5 DASHBOARD METRICS

StateName

— Identifier ——

InputName

— Identifier ——

StateMachineFunctionName

— Identifier ——

Summation of the metrics in the listed State Machine transitions.

Examples:

e Define metric Llogon_OKAY in the DashBoard group CodeMagus to be send to
the DashBoard server every ten seconds for the active State Machine posdev.auths.
This metric is a summation of the transitions from the State Machine’s input
POS_LOGON_REPLY.

metric logon_OKAY

group (CodeMagus)

refresh (10)

machine (posdev.auths)

title ("POS device logon accepted")

description ("POS device logon accepted")

type (logon_OKAY)

sum
(
wait_logon_reply.POS_LOGON_REPLY,
retry_1 wait_logon_reply.POS_LOGON_REPLY,
retry_2_wait_logon_reply.POS_LOGON_REPLY,
retry_3_wait_logon_reply.POS_LOGON_REPLY
)

e Define metric Posdev_Instances in the DashBoard group CodeMagus to
be send to the DashBoard server every ten seconds for the active State Machine

posdev.auths. This metric is a snapshot of instances count in the various
states of the State Machine.

metric Posdev_Instances
group (CodeMagus)
refresh (10)
machine (posdev.auths)
title ("Posdev instances")
description ("Snapshot of instances count in the various states")
type (Posdev_Instances)
list (instances)

4

Code Magus Limited 45 CML00041-03

5.3 Metric Definition 5 DASHBOARD METRICS

e Define metric Sessions in the DashBoard group CodeMagus to the Dash-
Board server to be send every ten seconds for the active State Machine posdev .auths.
This metric is a summation of the transitions from the State Machine’s input
timer_expire (device_ready).

metric Sessions
group (CodeMagus)
refresh (10)
machine (posdev.auths)
title("Sessions offered")
description ("Sessions offered")
type (Sessions)
sum
(
device_idle.timer_expire (device_ready)

)

Code Magus Limited 46 CML00041-03

6 STATE MACHINE DEFINITION

6 State Machine definition

6.1 Introduction

The State Machine consists of a finite number of states and transitions. One of these
states is always the current status of the machine; i.e. transitions caused by inputs from
the time the State Machine system starts to the present time lead to the current status.

A transition indicates a change from one state to another and is described by an input
that would need to be fulfilled to enable the transition. For each transition there are
optional actions that can be performed before entering the next state. An action is an
external output and/or internal orkhestra functions.

To summarise, the State Machine can be described as:
e An initial state, in which the machine is in at start-up.
e A set of possible input events.

e A transition which includes a set of possible actions (output and/or orkhestra
functions) that result from the input.

e A new state that results from the transition.
e A final state, in which the machine is considered complete.

At machine start the initial state is automatically set to first state defined and the input
that will be triggered is startup.

A machine has a specific final state defined, the name of which is final. The final
state is one in which no transitions lead out of.

The orkhestra internal functions return control immediately. An example is to trigger
an input, either immediately or at some time in future. Refer to section 6.4 on page 60
for a full description of these functions.

6.2 Elements
The elements for defining a State Machine comprise reserved words, identifiers, string

literals, comments and integers. The definitions are free format and white spaces have
no grammatical meaning except where they might appear within string literals.

6.2.1 Comments

Comments are introduced in two ways:

Code Magus Limited 47 CML00041-03

6.2 Elements 6 STATE MACHINE DEFINITION

e Using double minus sign (‘~-") and continue up to the end of the current input
line.

e Using the left brace (‘{”) and continue up to and including the next right brace
(‘}’). Comments can span lines and can contain any characters except the right

brace (‘}’) which would end the comment. Consequently, comments cannot be
nested.

Examples:

—-— File: atmams.mch

—-— ATM AMS creditcard stress.

Code Magus Limited 48 CML00041-03

6.2 Elements 6 STATE MACHINE DEFINITION

6.2.2 Reserved Words

Reserved words have a special meaning in terms of directing the parsing of commands.The
reserved words are:

begin by class constant
control_ program constant created date
description deviation distribution end
exponential gaussian machine max
mean min modified mu

notes target title uniform
value weight weights

machine

Table 3: State Machine reserved words

6.2.3 Identifiers

An Identifier is case sensitive, it starts with a letter which can be followed by any number
of letters, digits or the under-score character.

Examples:
Connected wait_connection connect
6.2.4 Strings
A String is any sequence of printable (or keyboard) characters enclosed in double quotes.

The enclosing double quote may not appear within the String, neither the newline
character(i.e. strings cannot span source text lines), but they may be concatenated:

Examples:

description("Time in milliseconds to delay, before sending "
"a request")

6.2.5 Integers

A Integer consists of a nonempty sequence of decimal digits ‘0’ through ‘9’.

Code Magus Limited 49 CML00041-03

6.3 Machine Definition 6 STATE MACHINE DEFINITION

Examples:

1234
0

6.3 Machine Definition

The State Machine definition starts by defining the name of the current machine. This
identifies the machine once loaded by orkhestra. Following the name is the preamble
sections and then the state definitions, which is enclosed by the begin and end key-
words; see figure 2 on page 51.

See appendix A on page 74 for an example of a very basic State Machine definition.

—»@achine}—» MachineName %)
C‘ PreambleSections D

Q Declarations

-

MachineName

— Identifier ——

Code Magus Limited 50 CML00041-03

6.3 Machine Definition 6 STATE MACHINE DEFINITION

—-— An example of a simple state machine.

machine orksample();
—— Mandatory preamble.

created by ("Mr Sample");

description ("Orkhestra sample control program");
date ("2008-01-16T10:51:18");

target ("Demonstration");

control_program (orksample);

control_program ods;

—-— Optional preamble.
notes ("Bla bla");
modified by (Mr Sample?);
—-— Declarations

value timeout_value

(O

weight_distribution what_transaction

(...)7

—— States - transitions

begin
State 1

state n
—-— End of State Machine definition.

end

Figure 2: Example of a State Machine Definition

6.3.1 Preamble

The Preamble provides certain documentation regarding the State Machine. A Preamble
comprises a number of sections some of which are mandatory and some of which are
optional.

Code Magus Limited 51 CML00041-03

6.3 Machine Definition 6 STATE MACHINE DEFINITION

Preamble

To PreambleSection T

PreambleSection

ControlProgram "
Creator ———

Description I

Date Q

Target I

Notes I

ffffff#

Modified ——

ControlProgram

—»Ccont roLprogra@—»@—» Identifier »@——@—»

Defines the control program that will be used by this machine. This control program
must be defined to orkhestra and started before the State Machine can be started.

The ControlProgram preamble section is mandatory.

Creator

2O (D

The Creator preamble section is mandatory and Identifies the author.

Description

—»@escript iorb—»@—» String »@—»@—»

The Description section provides a mechanism for assigning an comment to the State
Machine which is formally part of the description of it.

The Description preamble section is mandatory.

Date

{0 ()

Code Magus Limited 52 CML00041-03

6.3 Machine Definition 6 STATE MACHINE DEFINITION

The Date section is provided so that a date can be associated with the State Machine.
This date is interpreted as the date the State Machine was created. TSODate has the
ISO date and time format:

yyyy-mm-ddThh:mm:ss

Where the portion before the T-character is the date and the portion after the T character
is the time stamp. In the date portion, yyyy is the four digit year, mm is two digit the
month number, and dd is the two digit day of the month. In the format of the time stamp,
the hh is the hour of the day according to the twenty four hour clock format, mm is the
two digit minutes passed the hour and ss is the two digits passed the minute

The Date preamble section is mandatory.

Target

(O-{svie 1)

The Target preamble section is a mandatory comment field which indicates the target
system under test to which this State Machine applies.

Notes

(O 1)

The Notes section is designed so that any additional commentary can be include as part
of the State Machine. For example, if the source are being version controlled through a
CVS repository, then you might choose to described the CVS entries as note strings.

Modified

(o) -(O{ e (-

The Modified optional preamble section is provided as a means by which anyone mod-
ifying the State Machine can record the name of the user who modified the State Ma-
chine. A Notes optional preamble section can be used to record the details of the
modification

Example preamble sections:

created by ("Jan V1ok");

description ("Orkhestra sample control program");
date ("2008-01-16T10:51:18");

target ("Demonstration");

control_program (orksample);

Code Magus Limited 53 CML00041-03

6.3 Machine Definition 6 STATE MACHINE DEFINITION

6.3.2 Declarations

This subsections describe the declarations of values and weight distributions
that are used for defining the states of the State Machine.

Ti ValueDeclaration 0
WeightDeclaration o
ValueDeclaration

ﬂalue}—» ValueName 4@3 —
Q Title

Description —)
Q Constant j

\><di stribution ExponentialDistribution
GaussianDistribution
UniformDistribution
Sore J
14
ValueName

— Ildentifier ——

Define a value. A value isused by the orkhestra internal function start _timer ();
see section 6.4.2 on page 62.

Title
({5 10—

Code Magus Limited 54 CML00041-03

6.3 Machine Definition 6 STATE MACHINE DEFINITION

Assigns a title to the value which is formally part of the description of it.

Description

—»Cdescript io@—»@—» String »@—»

This provides a mechanism for assigning an comment to a State Machine value which
is formally part of the description of it.

A value can be any one of the following:

e Constant

(O {meser |4

A Constant is specified in milliseconds.

Example:
Define the value t imeout_value as a constant with a value of 50 seconds:

value timeout_value

(

title ("Response time out")

description("Time in milliseconds to wait for a response message")
constant (50000)

)i

e ExponentialDistribution

(Derwonenciany (D)-in)y O

@ ‘ Integer ° @ “ Integer @—»

min, max and mu are specified in milliseconds.

Example:
Define the value think_t ime as an exponential distribution with min as 10 sec-
onds, max as 3000 seconds and mu as 100 seconds:

value think_time
(
title("Device Idle time")
description("Time in milliseconds an instance will be in the idle state")
distribution(class (exponential) min (10000) max (3000000) mu(100000))
)

e GaussianDistribution

Code Magus Limited 55 CML00041-03

6.3 Machine Definition 6 STATE MACHINE DEFINITION

class o gaussian a 0 Integer

(O-{meser |4

mean and deviation are specified in milliseconds.

Example:
Define the value sw_down_latency as a gaussian distribution with mean as 2
seconds and deviation as 500 milliseconds:

value sw_down_latency
(
title ("SW download latency")
description("Time in milliseconds to delay, before sending the "
"next packet request")
distribution(class (gaussian) mean (2000) deviation (500))
)

e UniformDistribution

UniformDistribution

© (i) s

@ 0 Integer @—»

min and max are specified in milliseconds.

Example:
Define the value 1ogon_latency as an uniform distribution with min as 100
milliseconds and max as 4600 milliseconds:

value logon_latency
(
title ("Logon latency")
description("Time in milliseconds to delay, before sending a logon request")
distribution(class (uniform) min (200) max (4600))
)

Code Magus Limited 56 CML00041-03

6.3 Machine Definition 6 STATE MACHINE DEFINITION

WeightDeclaration

—»@e i gh%i stributi orD—» WeightDistributionName ~@3
C. Title

Description D
C» Weights

WeightDistributionName

— Ildentifier ——

Define a weight distribution. A weight distribution is used by the orkhestra internal
function choose () ; see section 6.4.1 on page 60.

Title

(O-f s |-

Assigns a title to the weight distribution which is formally part of the descrip-
tion of it.

Description

—»Cdescript ion}—»@—» String »@—»

This provides a mechanism for assigning an comment to a State Machine weight
distribution which is formally part of the description of it.

Weights

(O | Henir |- D~

Code Magus Limited 57 CML00041-03

6.3 Machine Definition 6 STATE MACHINE DEFINITION

Define the weight s within the distribution with their relevant weights.

Example:
Define the weight distribution what _transaction to reflect the desired transaction
profile:

weight distribution what_transaction
(
title("Transaction profile")
description("Ratio between the various transactions")
weights
(
logon_only (1)
credit_card(50)
debit_card(50)
download_bin (1)
download_new_hotcard (1)
download_software (1)
)
)

6.3.3 State Definition

This sub section describes the definition of the states of a State Machine. A state defi-
nition defines the transition out of the current state to a new state.

—»@—» StateName @» Transition »@—» NextState »@—»@—»

StateName
Identifier -
*

NextState
Identifier

. continue '

If the state name is “*’ the transition will apply to all the states in the State Machine
that do not have this specified transition. In other words a ‘*’ defined transition acts as
a default transition. If the new state name is “*’ then the transition does not change the

Code Magus Limited 58 CML00041-03

6.3 Machine Definition 6 STATE MACHINE DEFINITION

state. In other words the new state is the current state and this is a short form of writing
the name again.

If the NextState is defined as continue the State Machine will ignore the transition and
remain in the current state. This will not effect the State Machine stats.

If the key word quiesce is defined. this state is eligible for deleting an instance when the
State Machine 1s quiescing the instances. When instances are shrunk and there are no
quiesce states defined - the excess instances are immediately deleted. When there are
quiesce states defined, an instance will be deleted when it transitions to a quiesce state,
this continues until the desired number of instances are reached.

Transition

T InputName 7@ J g
Functionlnput ActionList

InputName

— Identifier ——

Functionlnput

ﬁ Choice T
TimerExpire

A transition is defined by an input that needs to be fulfilled followed by optional actions
in order for the State Machine to reach a new state.

An Input is either an external input name or an input that is generated due to a previous
invocation of an internal orkhestra function as defined in section 6.4 on page 60.

Choice

‘ Identifier @—»

A Choice names an input generated in a previous state by the choose () function. See
section 6.4.1 on page 60.

TimerExpire

—»Cc ime r,expire)»@—» Identifier »@—»

A timer expiration names an input generated in a previous state by the start_timer ()
function; see section 6.4.2 on page 62.

Code Magus Limited 59 CML00041-03

6.4 Internal Functions 6 STATE MACHINE DEFINITION

ActionList

Action

An action list is a semi-colon separated list of one or more individual actions.

Action

T OutputName T—~

InternalFunction

An action is an external output or an internal orkhestra function. Within a transition
there may be no more than one external output specified, but any number of

orkhestra internal functions may be specified. See section 6.4 on page 60 for
the definition of the internal orkhestra functions.

6.4 Internal Functions

This section describes the internal State Machine functions. The following functions are
available:

e choose()
Enables the selection of any given number of choices of a future internal
input biased by the associated weighting definition. The future input is matched
in the new state by choice () immediately (see section 6.3.3 on page 59).

e start_timer()
Start a timer in order to trigger a future internal input when aa given time
limit expired. The future input is matched in the new state by t imer_expire ()
on expiry (see section 6.3.3 on page 59).

e cancel_timer()
Cancel a previous timer event.

e start_machine() Start one or more instances of a State Machine.

6.4.1 Choose Function

‘ WeightDistributionName »@—»

Code Magus Limited 60 CML00041-03

6.4 Internal Functions 6 STATE MACHINE DEFINITION

WeightDistributionName

Enables the selection of any given number of choices of next internal input
name with each selection having a relative weight associated with it. This weighting
determines the relative likeliness of a selection being made. Once a selection is made
by orkhestra the selected name is triggered as a future input event to orkhestra.

See Weight declaration in section 6.3.2 on page 56.

Example:
A transaction can be either reversed, ignored or accepted. State machine extract:

weight distribution TW
(
title ("Reversal profile")
description("Ratio for reversal of transactions")
weights
(
reverse (5)
continue (25)
ignore (10)
)
)i

[transaction_01]
TRANO1_ name:
choose (TW) ;
[transaction_01_choice]
7
—— What was the choice? do we need to reverse, ignore or continue with
—-— the transaction?

[transaction_01_choice]
choice (reverse) : —— Need to send the reversal
TRANO1_REVERSE; —-— Send the reversal to the control program
[device_idle]
7
[transaction_01_choice]
choice (ignore) : -— 0K, continue with the sequence.
TRANO1_DROP; —-— Send new output to CP - DROP transaction.
[device_idle]
7
[transaction_01_choice]
choice (continue) : -— 0K, continue with the sequence.
TRANO1_OK; —-— Next message in the sequence.
[wait_tran0l_resp]

4

Code Magus Limited 61 CML00041-03

6.4 Internal Functions 6 STATE MACHINE DEFINITION

6.4.2 Start Timer Function

0 InputName @» ValueName »@—»

InputName

— Ildentifier ——

ValueName

— Ildentifier —

Start a timer event. When the timer expires, the input, as specified on the request will
be triggered. The value used must be defined in the preamble section; (see section
6.3.2 on page 54). Time values are in milliseconds.

Example:

Define a transition out of state initial to a state of device_idle. On receiving
the input startup the State Machine transitions to the new state and will execute the
internal orkhestra function start_timer.

—-— At start-up this is the initial state
—-— and the default input is startup.
[initial]

Startup:

start_timer (device_ready,think_time);
[device_idle]

4

6.4.3 Cancel Timer Function

—»@ancel,t imer>—>®—> InputName @—»

InputName

— Ildentifier —

Cancel a previously started timer.

Example:
Onreceiving the input BICISO_0110_1 instatewait m100_resp thetimerml100_timeout
must be cancelled. This timer was set in state start_seq. State machine extract:

—— The choice has been made, so get on with it.

Code Magus Limited 62 CML00041-03

6.4 Internal Functions 6 STATE MACHINE DEFINITION

[start_seq]

choice(send_100) :

BICISO_0100_1;

start_timer (m100_timeout,msg_timeout);
[wait_ml00_resp]
7
—— Received the 0100’ message response.
—— Cancel the outstanding timer.
[wait_ml00_resp]

BICISO_0110_1:

cancel_timer (ml00_timeout) ;
[send_220]
7
—— Timed out waiting for the "0100’ message response.
—-— Go back to the idle state.
[wait_ml00_resp]

timer_expire (ml100_timeout) :

start_timer (device_ready,think_time);
[device_idle]

4

6.4.4 Start Machine Function

—»Cstartmachine)—»@—»@nachine name>—>@—>

Start a State Machine with the number of instances in the machine definition in orkhes-
tra.

Example:
Start a machine with the name of NEWTRAN, after receiving the input LOGON_TRAN:

[wait_logon_response]
LOGON_TRAN:
start_machine (NEWTRAN) ;

[echo]

4

Code Magus Limited 63 CML00041-03

7 REMOTE CONTROL PROGRAMS

7 Remote Control Programs

7.1 Overview

Orkhestra have the ability to run remote control programs. This is done in order for a
test to be able to use the computing power of machines and in such a way that makes
the ramp up of instances scalable for all practical purposes (that is to achieve tens of
thousands of instances, possibly up to a hundred thousand).

Control
Orkhestra API Program(s)
Orkhestra OR
(fork)
Agent Interface Local agent

Agent Interface

Configfile

Rermot ‘ Control
emote agent(s) Orkhestra API Program(s)

Figure 3: Relationship of orkhestra, the agents and the control programs

Note:
Interfaces:

e orkhestra API - see section ?? on page ??.
This interface is between the control programs and either orkhestra or the remote
agent.

e Agent Interface
This interface is between:

Code Magus Limited 64 CML00041-03

7.2 Clock Synchronisation 7 REMOTE CONTROL PROGRAMS

— orkhestra and the local agent.
— local agent and remote agents
Note:

e orkhestra will either run the control programs directly or through agents, a mix of
the two scenarios is not permitted.

7.2 Clock Synchronisation

There is a need for clock synchronisation between the local and remote agents so that
orkhestra can be aware of any actual event times on the remote machines with respect
to the local machine’s clock. This drift will be determined by the having the local
and remote agent determine the differences in clock values by the following procedure:
Once communication between the local and remote agent has been established a clock
diff between the local and remote machines will be determined by the local machine
sending a message to the remote machine and taken the local clock value at the time the
message is sent, and then taking the local clock value when the reply is received. The
remote machine will simply respond to the message by replying with the remote clock
value. The two clock values recorded on the local machine will be used to determine
the response time of the remote machine by taking subtracting the message send clock
time from the message response clock time.

The above step are performed 100 times, and the smallest response time message is used
to determine the clock drift between the two machines. The clock drift is determined by
subtracting the remote clock value in the reply message corresponding to the shortest
response time from the clock value record when the message was sent from the local
machine to the remote machine; and then subtracting half the response time for this
shortest response time message.

The local agent will adjust the time stamp in all the control program messages destined
to orkhestra with the relative time difference.

7.3 Local Agent

The local agent is orkhestra’s interface to the remote control programs and is totally
transparent to the orkhestra State Machine. The local agent load balances the traffic
from the State Machine to the various remote agents.

The orkhestra commands applicable to the local agent are:
e ‘define agent’: Defines the local agent, see section 3.3.6 on page 19.

e ‘start agent’: Starts the local agent, see section 3.3.7 on page 22.

Code Magus Limited 65 CML00041-03

7.3 Local Agent 7 REMOTE CONTROL PROGRAMS

e ‘stop agent’: Stops the local agent, see section 3.3.17 on page 37.

On starting the local agent, orkhestra passes its parameters as command line options.
The local agent has the following options:

e ‘—c|—--config’ Specifies the configuration file for the agents, see section 8 on
page 69.

e ‘~v|-—-verbose’ When specified, the local agent operates in a verbose manner.

7.3.1 Operation

On startup the local agent initialisation steps are:

1. Parse the agent configuration file as specified by the command line option ‘~c | -——config’.
If any errors are encountered in parsing the configuration file the local agent will
do an error shutdown, see section 7.3.3 on page 67.

2. Establish connection with all the configured remote agents, if unable to do so, it
will do an error shutdown, see section 7.3.3 on page 67.

3. Send each remote agent its configuration.

4. When acknowledge of successfully initialisation is received from an remote agent,
do the clock synchronisation with him.

5. When all the remote agents is up and running, the local agent notifies orkhestra
that it is ready for running the control programs remotely.

Messages from orkhestra are dealt with as follows:

e State Machine outputs:
A State Machine message is related to an instance in the State Machine. The first
time the local agent encounters an instance, it allocates it on a round robin basis
to the next remote agent that is running the designated control program for this
instance. Once an instance is allocated to a remote agent, forward it to that agent.

e control program control: Forward to the all the remote agents that are configured
for the control program designated in the message.

Messages from the remote agents are dealt with as follows:

e State Machine inputs:
Adjust the time stamp in the messages with the relative time difference and for-
ward to orkhestra.

e control program control:
Forward to orkhestra.

Code Magus Limited 66 CML00041-03

7.4 Remote Agent 7 REMOTE CONTROL PROGRAMS

7.3.2 Shutdown
The local agent will shutdown when requested so by orkhestra, this is done by orkhestra
closing the connection to the local agent. The local agent before terminating:

e Close the log file, if open.

e Close all connections to the remote agents, this will result in them shutting down.

See section 7.3.3 on page 67 for exceptions and errors.

7.3.3 Error Shutdown

When the agent encounters a severe error, that needs human interaction, it will notify
orkhestra of this with a ORKAGENT_FAILED message, informing orkhestra as to the
reason for this. On receiving this, orkhestra will shutdown the local agent by closing
the connection to it.

The following constitutes a severe error:
e Configuration file errors.
e Unable to connect to all the remote agents.
e Receiving a start up message for an unknown control program, that is not defined.

e Input from orkhestra out of context. This constitutes a bug of some sorts, that
needs to be fixed.

e Closure of a remote agent’s connection.
e Receiving a ORKAGENT_FAILED message from a remote agent.

e Unable to start a control program for any reason - the remote agent that could not
start the control program will send a ORKAGENT _FAILED message.

7.4 Remote Agent

A remote agent at startup do not have any configuration, other than the TCP/IP port
to listen on on for a connection from a orkhestra’s local agent. Once a local agent
has connected, the local agent will send the applicable configuration details from the
agents configuration file (section 8 on page 69. The remote agent is now ready to run
control programs and route the relevant traffic from/to orkhestra and the control pro-
grams. When the remote program shutdown, it reverts to its initial state, waiting for a
connection, see section 7.4.3 on page 68.

Code Magus Limited 67 CML00041-03

7.4 Remote Agent 7 REMOTE CONTROL PROGRAMS

7.4.1 Synopsis

Code Magus Limited Orkhestra Vv2.0: build 2009-11-19-17.27.27
[orkagentr] $Id: orkagentr.c,v 1.1.1.1 2011/06/13 12:06:24 janvlok Exp $
Copyright (c) 2009 by Code Magus Limited. All rights reserved.
[Contact: stephen@codemagus.com].
Usage: orkagentr [OPTION...]
-p, ——port=<port> Port to listen on
-v, ——verbose Verbose output

Help options:
-?, ——help Show this help message
—-—-usage Display brief usage message

Where:

e ‘~p|—-—port’ Specifies the port number to listen on for a connection from the
local agent.

e ‘—v|--verbose’ When specified, the remote agent operates in a verbose man-
ner.

7.4.2 Operation
7.4.3 Shutdown

Shutdown is logical and not termination of the program: reset to start up state, waiting
for a local agent to connect.
The remote agent will shutdown when the local agent closes the socket connection.

e Close the log file, if open.

e Reset, clear everything and wait for a connection from the local agent.

7.4.4 Error Shutdown

When the remote agent encounters a severe error, that needs human interaction, it will
send a ORKAGENT_FAILED message, using the structure orkagent_info_msg to
orkhestra via the local agent describing the reason. On receiving this, orkhestra will
shutdown the local agent by closing the connection pipes to the local agent.

The following constitutes a severe error:
e Input out of context. This constitutes a bug of some sorts, that needs to be fixed.
e Closure of the local agent’s connection.

e Unable to start a control program for any reason.

Code Magus Limited 68 CML00041-03

8 AGENT CONFIGURATION FILE

8 Agent Configuration File

This section describe the configuration file required by the local agent (section 7.3 on
page 65). It optionally specifies a log file for the local agent and describes the definition
and configuration of the remote agents.

8.1 Elements

The elements for defining the configuration file comprise reserved words, identifiers,
string literals, comments and integers. The definitions are free format and white spaces
have no grammatical meaning except where they might appear within string literals.

8.1.1 Comments

Comments are introduced by using double minus sign (‘~—-") and continue up to the end
of the current input line.

Examples:

—-— File: agent.cfg

—-— Configuration for running control programs orksample and orksample?2
—-— remotely:

- orksamle is to run on both blackbox and codemagus.

- orksamle2 only run on blackbox.

—-— The control program names as specified here are as per orchestra’s
-— configuration.

8.1.2 Reserved Words

Reserved words have a special meaning in terms of directing the parsing of commands.
The reserved words are:

agent host port setenv
control copies log program
end open programs

Table 4: Agent configuration file reserved words

8.1.3 Identifiers

An Identifier is case sensitive, it starts with a letter which can be followed by any number
of letters, digits or the under-score character.

Code Magus Limited 69 CML00041-03

8.2 Syntax and Semantics 8 AGENT CONFIGURATION FILE

Examples:

orksample orksample_2

8.1.4 Strings

Strings are:

e any sequence of characters (except double quotes and the newline character) en-
closed by double quotes.

e any sequence of characters (except single quotes and the newline character) en-
closed by single quotes.

Strings cannot span source text lines, but they may be concatenated:

Examples:

open log "text (${LOGSPATH} /local_agent_D$ {DATE_YYYYMMDD}_ TS${TIME_HHMMSS}"
".txt,mode=w)";

8.1.5 Environment Variables

EnvironmentVariable

— $ { b Identifier -~ } ——

Environment variables are expanded to their value when encountered in command input
text.

8.2 Syntax and Semantics

The configuration file starts by defining a name for the local agent, followed by an
optional log file for the local agent and then the definition of remote agents.

Code Magus Limited 70 CML00041-03

8.2 Syntax and Semantics 8 AGENT CONFIGURATION FILE

—»@gent}—» AgentName «@)
LogFile J

¢
I8

AgentName

— Identifier ——

AgentName identifies the name of the local agent, this name is used for agent message
identification in the log file and trace messages. The definition of LogFile is describe in
the next section, see section 8.2.1 on page 71. appendix B on page 77.

See appendix B on page 77 for an example of a sample configuration file.

8.2.1 Remote Agent definition

The definition of a remote agent starts with the key word remote and is terminated
with end;

Code Magus Limited 71 CML00041-03

8.2 Syntax and Semantics 8 AGENT CONFIGURATION FILE

—»@emot e>—> RemoteAgentName «@D

Host —~ Port 3

ControlPrograms D

ﬁ

)

SetEnvVariable

F/f\

LogFile J

RemoteAgentName

— Ildentifier —

RemoteAgentName identifies the name of the remote agent.

Host

—@ost}—» IPAddress »@—»

Port

—»@ort}—» Integer »@—»

Host and Port specifies the remote agent’s TCP / IP address. IPAddress can be specified
as a host name or by using the Internet notation of dots and numbers.

Code Magus Limited 72 CML00041-03

8.2 Syntax and Semantics 8 AGENT CONFIGURATION FILE

ControlPrograms

%ontrol }»@rograms)?

ControlProgramName J @—@—>
copie s>—» Integer

(
)

ControlProgramName

— Ildentifier —

This specifies a comma separated list of one or more orkhestra control programs that this
remote agent is to run, on request from orkhestra. If copies is specified for a control
program then the remote agent will start that many copies of that control program; This
overrides the number of copies requested from orkhestra.

SetEnvVariable

—»CsetemD—» VariableName »@—» Value @—»

VariableName

— Ildentifier —

Value

— String ——

The remote agent sets the environment variable VariableName to Value. This is done
before any control programs are started.

LogkFile

@ LogFileName »@—»

LogFileName

String ——

Open a log file with the name as specified by LogFileName ;

Code Magus Limited 73 CML00041-03

A SAMPLE STATE MACHINE: ORKSAMPLE . MCH

A Sample State machine: orksample.mch

{

This is a very simple machine:

At start-up the first transition for a state machine instance is to
the idle state, and after it transacts, it 1is back to the idle state.
Before entering the idle state an idle timer will be set, for the
duration a instance (device) spends in the idle state. The value
definition ’"think_time’ is used for the idle time.

Once the timer expires:

Output ’connect’ for a connection request to the control program and
wait for input as to the outcome. If the input ’‘disconnect’, set the
idle timer and back to the idle state.

Input ’connect’ tells us that the instance is connected, and just to
demonstrate the use of the choose () function, for some instances a canned
message (GENERIC_REQUEST) are requested to be send, an for others a immediate
"disconnect’ are outputted, which eventually leads back to the idle state.
The relevant weights for this are defined by the weight distribution
"what_to_do’ .

When outputting the ’'GENERIC_REQUEST’, a timeout timer is set, using the wvalue
definition ’timeout_value’.
Waiting for the response, we need to cater for:
The time out timer that was set expired - output ’'disconnect’ and via
waiting for the ’'disconnect’ input, back to the idle state.
Input ’disconnect’ - set the idle time and back to idle state.
Input ’GENERIC_RESPONSE’, output ’disconnect’ and via waiting for the
"disconnect’ input, back to the idle state.
}

machine orksample () ;

created by ("Jan V1ok");

description ("orkhestra sample control program.");
date ("2008-01-16T10:51:18");

target ("Demonstration");

control_program (orksample);

modified by ("Jan V1ok");

value timeout_value
(
title ("Response time out")
description("Time in milliseconds to wait for a response message")
constant (50000)
)i

value think_time

(

title ("Device Idle time")

Code Magus Limited 74 CMLO00041-03

A SAMPLE STATE MACHINE: ORKSAMPLE . MCH

description("Time in milliseconds an instance will be in the idle state")
distribution(class (exponential) min (10000) max (3000000) mu(100000))
)i

weight distribution what_to_do
(
title("Disconnect or continue")
description ("Some instances we want to disconnect, before sending a message")
weights (disconnect (1) continue(2))
)i

begin

—— This wild card state [*] is the default for a disconnect in any state,
—-— it will only, if a state do not have a transition for disconnect.

—-— If we get a disconnect in any state, there is not much we can or want to
—-— do about it.

disconnect:
start_timer (device_ready, think_time);
[device_idle]
7
—-— The first state defined will be by default initial state, so at
—-— start up of an instance, this is the initial state, and the default.
—— input is startup.
[startup]
startup:
start_timer (device_ready,think_time);
[device_idle]

4

—— Instance is ready for the next message, once the timer has expired.
—— Get it connected.
[device_idle]
timer_expire (device_ready) :
connect;
[wailt_connection]

4

—-— Waiting for for the termination of a connection, a disconnect
—-— was requested.
[wait_disconnect]
disconnect:
start_timer (device_ready,think_time);
[device_idle]

4

—— Just to demonstrate the choose() action:
—-— Some connection we are going to terminate, without sending
-— a message, using the what_to_do weight distribution,

Code Magus Limited 75 CMLO00041-03

A SAMPLE STATE MACHINE: ORKSAMPLE . MCH

—-— that 1is to say, once we have a connection established.
[wait_connection]

connect:

choose (what_to_do);
[choice_what_to_do]

4

—-— OK disconnect

[choice_what_to_do]
choice (disconnect) :
disconnect;

[wait_disconnect]

4

—-— Continue to send a message
[choice_what_to_do]

choice (continue) :

GENERIC_REQUEST;

start_timer (msg_timed_out, timeout_value);
[wait_response]

4

—— Bummer - Bad parameters give to the control program?
[wait_connection]

connect_error:
[final]

4

—-— Wait for the response

[wait_response]
GENERIC_RESPONSE:
cancel_timer (msg_timed_out);
disconnect;

[wait_disconnect]

4

[wait_response]
timer_expire (msg_timed_out) :
disconnect;
[wait_disconnect]

4

[wait_response]
disconnect:
cancel_timer (msg_timed_out);
start_timer (device_ready,think_time);
[device_idle]

4

end

Code Magus Limited 76 CMLO00041-03

B SAMPLE AGENT CONFIGURATION FILE: ORKHESTRA_AGENT.CFG

B Sample Agent Configuration File: orkhestra agent.cfg

—-— File: orkhestra_agent.cfg

—— Configuration for running control programs orksample and orksample2
—-— remotely:

- orksamle is to run on both blackbox and codemagus.

- orksamle?2 only run on blackbox.

—— The control program names as specified here are as per orkhestra’s
—-— configuration.

—— Author: Jan Vlok.
—-— Copyright (c) 2009 Code Magus Limited. All rights reserved.

-— $Author: janvlok $

-— S$Date: 2016/04/07 07:59:12 $

—— $Id: orkhestra_agent.cfg,v 1.3 2016/04/07 07:59:12 janvlok Exp $
-— $Source: /home/cvs/cvsroot/orkhestra/orkhestra_agent.cfg,v $

-— $Revision: 1.3 $

-— S$State: Exp $

—-— SLog: orkhestra_agent.cfg,v $
—-— Revision 1.3 2016/04/07 07:59:12 janvlok
—— Change references to orkhestra

-— Revision 1.2 2015/04/23 14:31:01 janvlok

—— Enhanched remote agent to start control programs with copies specified in
—-— the agent configuration file, overiding orkhestra’s request for copies to
-— start with.

-— Revision 1.1 2011/06/15 10:15:32 janvlok
—— Initial import of documentation

agent orhestra_agentr;

open log "text (${LOGSPATH}/local_agent_DS{DATE_YYYYMMDD}_TS${TIME_HHMMSS}"
".txt, mode=w)";

remote agent blackbox
host blackbox.africa.nedcor.net;
port 22221;
control programs (orksample copies 16,orksample?);
setenv CODEMAGUS_SOURCE="${HOME}/dev";
setenv LOGSPATH="${CODEMAGUS_SOURCE}/orkhestra/test-agent/logs";
setenv SCRIPTS="${CODEMAGUS_SOURCE}/orksample/scripts";
setenv CODEMAGUS_MSGLEVEL="VERBOSE";
open log "text (${LOGSPATH}/blackbox_agent_DS${DATE_YYYYMMDD}_T"
"$S{TIME_HHMMSS}.txt,mode=w)";
end;

Code Magus Limited 77 CMLO00041-03

REFERENCES REFERENCES

remote agent codemagus
host codemagus.it.nednet.co.za;
port 22222;
control programs (orksample copies 3);
setenv CODEMAGUS_SOURCE="${HOME}/dev";
setenv LOGSPATH="${CODEMAGUS_SOURCE}/orkhestra/test-agent/logs";
setenv SCRIPTS="${CODEMAGUS_SOURCE}/orksample/scripts";
setenv CODEMAGUS_MSGLEVEL="NOTSET";

open log "text (${LOGSPATH}/codemagus_agent_DS${DATE_YYYYMMDD}_T"
"S{TIME_HHMMSS}.txt,mode=w)";
end;

end.

References

[1] orkhestra: Control Program API Reference Version 1. CML Document CML00084-
01, Code Magus Limited, June 2011. PDF.

Code Magus Limited 78 CMLO00041-03

http://www.codemagus.com/documents/orkhestra_CPAPI_CML0008401.pdf

	1 Introduction
	1.1 Overview

	2 Environmental Variables
	3 Configuration
	3.1 Command interface
	3.2 Command Elements
	3.2.1 Comments
	3.2.2 Reserved Words
	3.2.3 Identifiers
	3.2.4 Strings
	3.2.5 Filenames
	3.2.6 Integers
	3.2.7 Environment Variables

	3.3 Command Syntax and Semantics
	3.3.1 General Command Syntax
	3.3.2 Command Options
	3.3.3 Alter Command
	3.3.4 Cancel Command
	3.3.5 Close Command
	3.3.6 Define Command
	3.3.7 Display command
	3.3.8 Exit Command
	3.3.9 Flush Command
	3.3.10 Help Command
	3.3.11 Load Command
	3.3.12 Mark Command
	3.3.13 Open Command
	3.3.14 Set and Reset Commands
	3.3.15 Shutdown Command
	3.3.16 Start Command
	3.3.17 Stop Command
	3.3.18 Switch Command

	4 orkhestra orkcmd command line interface
	5 Dashboard Metrics
	5.1 Introduction
	5.2 Elements
	5.2.1 Comments
	5.2.2 Reserved Words
	5.2.3 Identifiers
	5.2.4 Strings
	5.2.5 Integers

	5.3 Metric Definition

	6 State Machine definition
	6.1 Introduction
	6.2 Elements
	6.2.1 Comments
	6.2.2 Reserved Words
	6.2.3 Identifiers
	6.2.4 Strings
	6.2.5 Integers

	6.3 Machine Definition
	6.3.1 Preamble
	6.3.2 Declarations
	6.3.3 State Definition

	6.4 Internal Functions
	6.4.1 Choose Function
	6.4.2 Start Timer Function
	6.4.3 Cancel Timer Function
	6.4.4 Start Machine Function

	7 Remote Control Programs
	7.1 Overview
	7.2 Clock Synchronisation
	7.3 Local Agent
	7.3.1 Operation
	7.3.2 Shutdown
	7.3.3 Error Shutdown

	7.4 Remote Agent
	7.4.1 Synopsis
	7.4.2 Operation
	7.4.3 Shutdown
	7.4.4 Error Shutdown

	8 Agent Configuration File
	8.1 Elements
	8.1.1 Comments
	8.1.2 Reserved Words
	8.1.3 Identifiers
	8.1.4 Strings
	8.1.5 Environment Variables

	8.2 Syntax and Semantics
	8.2.1 Remote Agent definition

	A Sample State machine: orksample.mch
	B Sample Agent Configuration File: orkhestra_agent.cfg

