QCodeMagus

objtypes: Configuring for Object Recognition,
Generation and Manipulation

CMLO00018-01

Code Magus Limited (England reg. no. 4024745)
Number 6, 69 Woodstock Road
Oxford, OX2 6EY, United Kingdom
www.codemagus .com
Copyright (©) 2014 — 2024 by Code Magus Limited
All rights reserved

o CodeMagus April 24, 2025

1 INTRODUCTION

1 Introduction

There are a number of cases where the automatic determination of an object is required
outside of the context where that object would normally reside, or where an object of
a particular format or type requires manipulation in a context where the details of the
type of that object need to be taken into account. The interpretation, manipulation or
generation of records of files and messages of network traffic are just two examples of
such cases. In such situations the type of the object or the collection of the type of
the objects is manifest by the context in which they are processed. An example of this
might be a program designed to process a set of records as part of a specific file type
or to process network messages as part of a specific service. In these cases, it is not
uncommon for the program to determine from a number of options which of a small set
of types the record or message belongs. That the message belongs to that small set is is
assumed. To use an example, a program used to process records or messages of types
A, B or C, would check the whether some predicate, usually over a single record-type
or message-type field, indicates whether the record or message is of type A, B or C.
Typically, such programs reject records or messages which appear not to be of type A,
B or C. Where a record appears to be of type A, B or C the program would typically
accept that the record is of type A, B or C and, at best and usually, report that the record
or message of type A, B or C is ill-formed if the record or message really is not of the
asserted type.

The objtypes artefacts are designed to lift the information out of the context of the
record or message processing programs where types of messages or records can be
determined in a context independent of the processing program of those records or mes-
sages. This still restricts the type of a message or record to one of the types acceptable
by the containing type. For this reason the records or messages are abstractly referred
to as objects of a particular type known within a collection of object types. Hence the
name of the library and the artefact type.

It is intended that the collection of types is exhaustive of the types found in a particular
collection type (type of file or type of network service or type of transaction) and hence
are all reflected in the same configuration ob jtypes artefact. The artefact is designed
to be both machine and human readable and to provide both configuration data for a tool
processing collections of the specified types.

An objtypes collection of types is a mapping of an object known to be one of a
collection of types (i.e. known to be one of the records of a file or known to be one of
the messages of a network service) to its exact type. Because the type in turn maps to
the actual meta-data of the type, the mapping is a mapping down to the meta-data of
the object. The means by which this mapping is determined is by the evaluation of a
predicate associated with the type and evaluated over the object itself.

The description of the meta-data is outside of the scope of this artefact. This is deliberate
and desirable. Typically, the meta-data exists for a purpose other than the objtypes
artefact. For example, a copybook for a file, or a schema for a database entity. These
meta-data artefacts are maintained for the application systems that use them and the
meta-data is not necessarily owned by the owner of the objtypes artefacts. The

Code Magus Limited 1 CML00018-01

2 OBJTYPES CONFIGURATION

tools, for example, that use the objtypes are used not necessarily only used in the
development process. For this reason the objtypes artefacts only refer to the meta-
data and they do not redundantly replicate the meta-data.

There are a number of desirable side effects of using the ob jtypes artefact approach
for configuration:

e The first is that the actual detail meta-data is referenced and not replicated. This
allows the meta-data to remain with the owners and to be changed by them without
too much regard for the validity of the objtypes artefacts in general. This
ensures that the cost of maintaining an ob jt ypes artefact is kept to a minimum.

e Because the objtypes artefacts describe their mappings independently of their
actual use, they are generically usable and a particular objtypes artefact often
appears in the configuration of different tools. This in turn both amortises the
cost of maintenance of the artefact and puts pressure on the requirement for the
maintenance of the validity of an ob jtypes artefact.

e This document describes the ob jtypes configuration. There is also a mapping
between a containers name and the ob jtypes artefact that describes the types
of the objects within the container. Because the objects that we deal with in this
manner are always sequential, the configuration of that mapping is referred to as
segtypes are is described elsewhere.

e The component that processes an objtypes artefact is a common component
which runs unchanged on various platforms and which is independent of the tool
that processes the resultant data structure created by the component by processing
a objtypes artefact. This, and the point above, makes sure that the investment
in the high-degree of engineering of the component has a continuing return on
investment as do any tools that use the component.

The application interface is described in the ob jtypes library [1].

2 objtypes Configuration

An objtypes artefact is a textual description of the mapping of an object to the type
and meta-data that describes that object within a collection of possible types. This
description follows a formal grammar whose syntax and semantics will be described in
this section.

2.1 Lexical Elements

The lexical elements used to describe the objtypes grammar are designed to make
the ob Jjt ypes artefacts reasonable and their semantics manifest. However, some of the

Code Magus Limited 2 CMLO00018-01

2.1 Lexical Elements 2 OBJTYPES CONFIGURATION

elements referred to are defined as part of the application related meta-data which are
referred by the ob jtypes artefacts and the lexical elements of those artefacts as they
are used in the language processing systems are not quite as convenient as they could be.
The primary example (currently the only one implemented) is the COBOL copybook in
which the element names can have a minus sign or dash in them. This conflicts with
the more general ‘denser’ expressions that have become customary in third generation
programming languages after COBOL. For this reason, the dash is always interpreted
as an under-score character.

At the lexical element level white-space characters such as the space character, new-
line characters, carriage returns and tab characters are ignored and their presence or
otherwise between other lexical elements does not change the meaning of objtypes
artefact.

Similarly, the presence or absence of comments does not change the meaning of an
objtypes artefact. Comments are introduced anywhere in the text between lexical
elements using two adjacent dash characters and the comment extends from the double
dash to the next new-line character:

—— Test object type specification processed by testprog.c.
—— This collection of types is required by the testprog.c
—-— program to test the type collection library objtypes.

Other lexical elements include the detection of literals, identifiers, reserved words and
non-word operators that are formed with sequences of characters.

2.1.1 Literal Constants

There are a number of types of literals:

e Strings: A string literal is introduced by a quotation mark character or the apos-
trophe, which is not considered part of the value of the literal, a sequence of
characters which excludes the opening quotation mark or apostrophe or newline
characters and extends until the next matching quotation mark character or apos-
trophe, which again is not considered part of the value of the literal. The col-
lating sequence of assumed for the representation of string literals is determined
by the default collating sequence of the machine or the explicitly stated collating
sequence specified for the data.

— "abc’ and "abc" are string literals with the same value comprising the
lower case character sequence abc.

— ""NO!" exclaimed’ and "it’s usually possible" are string
literals in which the non-delimiting apostrophe or quotation mark is required
in the string.

Code Magus Limited 3 CMLO00018-01

2.1 Lexical Elements 2 OBJTYPES CONFIGURATION

e Hexadecimal strings: Some representations are required to be concrete represen-
tations independent of any assumed collating sequence or byte ordering. For this
purpose, hexadecimal literals are available. A hexadecimal literal is introduced
using the character ‘x’ or ‘X’ followed by an apostrophe or quotation mark char-
acter, followed by a sequence of the digits O ...9 and the characters ‘a’, ‘b’,‘c’,
‘A, e’ ‘£ A7, ‘B, ‘C, DY, ‘E7 and ‘F. The sequence is terminated by a match-
ing apostrophe or quotation mark character. The characters ‘x’, ‘X’, the quotation
marks or the apostrophe characters are not part of the literals value and there must
be an even number of hexadecimal digits between the quotation marks and the
apostrophe characters.

e Numbers: Numeric literals are formed by a sequence of the decimal digits 0 ...9
forming the integer portion of the number. This sequence can be preceded by
an optional ‘+ or ‘-’ sign indicating the sign of the number (a number without a
sign is assigned to be non-negative). The number may be followed by an optional
decimal fraction introduced with a decimal point ‘. followed by a sequence of
decimal digits.

The following are valid numbers: 100, 100.000,+100,-100.123,0100.123.

2.1.2 Reserved Words

There are number of reserved words which are used as key-words in the grammar. These
words cannot be used in ordinary identifiers. Reserved words are not case-sensitive.
Reserved words are used to introduce the syntactical constructs described in Section 2.2
on page 5.

path options type title
book map if include
exclude base bias when
div mod and or

not like ascii ebcdic
endianbig endian_little verbose

bind_wsm bind_bsm omit_fillers

lazy attributes suppressed

2.1.3 Composite Operators

Single character, non-word operators have their usual meaning and it is not necessary to
distinguish them from other single characters not forming part of other lexical elements.
There are a few composite operators which form lexical elements different from the
sequence of characters that form them. These are:

Code Magus Limited 4 CMLO00018-01

2.2 Syntax and Semantics 2 OBJTYPES CONFIGURATION

Element Meaning
<> Relational operator for not-equal
>= Relational operator for greater-than or equal
<= Relational operator for less-than or equal

2.1.4 Identifiers

An identifier is a word comprising a sequence of characters starting with letter of the
alphabet, and then followed by a sequence of letters of the alphabet, the decimal digits
and the under-score character. An identifier can also start with a sequence of decimal
digits provided this sequence is followed by a at least one letter of the alphabet or the
under-score character. Letters of the alphabet may be either lower-case or upper-case.
An identifier cannot have the spelling of a reserved word as the meaning of such lexical
elements will have the meaning of the reserved word.

The following are valid identifiers: control _data, 00110 _control _data, CONTROL-
_0001, CONTROL.

2.1.5 Other Characters

All other characters are make up lexical elements in comprising the a single character
and having the value of that character.

2.2 Syntax and Semantics

TypeConfig

— PreambleStatements —~ TypeList —

An objtypes configuration artefact or TypeConfig is a text file which comprises two
sections: The first section PreambleStatements introduces global options and attributes
which might not be inferred from the meta-data artefacts which are referenced in the
type definitions. The second part of the TypeConfig, TypeList, details the individual
types defined in the ob jt ypes configuration.

PreambleStatements

j PreambleStatement J
PreambleStatements - PreambleStatement

Code Magus Limited 5 CMLO00018-01

2.2 Syntax and Semantics 2 OBJTYPES CONFIGURATION

PreambleStatement

PathStatement

OptionsStatement

SetEnvStatement

There are two types of PreambleStatement which may appear in any order and which
may appear any number of times.

PathStatement

—»@oat@—» String »@—»

The PathStatement defines a path string which is used as a mask in order to find artefacts
such as copybooks which might be referred to the TypeList section of the TypeConfig.

In the following example, a COBOL copybook named testbook referred to in the
TypeList section of the TypeConfig will be assumed to be have the following full path
and name:

Given the following path statement:

path "/home/stephen/objtypes/%s.cbb";

a COBOL copybook named testbook referred to in the TypeList section of the Type-
Config will be assumed to be have the following full path and name:

/home/stephen/objtypes/testbook.cbb

OptionsStatement

—»@pt ions>—> Options »@—»

Options

ﬁ Option j -
Options »@—» Option

Code Magus Limited 6 CMLO00018-01

2.2 Syntax and Semantics 2 OBJTYPES CONFIGURATION

Option

——(aseit) o

ebcdic

endian_big

T

7

endian,little)

bind_wsm

bind_bsm

T

omit,filler%)

verbose

| NG N N N N N N

lazy

extended,arit@—J

nulls_as_na /

\vg_cormat,no,hex,datab—j
\»Cformat,non,di splay,dot>—/
*@ormat,non,di splaylnig—J

override,length,support)—/

\»<§Verride,length,hidde%>—4/

The OptionsStatement is used to supply meta-data attributes associated with the data
which cannot be deduced from the meta-data (for in example from a COBOL copy-
book), or which the local machine cannot be used as the default value for such attributes.
Some of these options are also used to determine the manner in which the objtypes
library component is to process the data.

{

T

j

7

e The ascii and ebcdic attributes indicate that the underlying character set of
the data presented to the ob jtypes library component for which one of the types
in the TypeList may apply is based on the ISO-8 character set with code page
00819 (ISO/ANSI Multilingual) graphics (ascii option), or EBCDIC character
set with code page 01047 (Latin 1/Open Systems) graphics (ebcdic option).

Code Magus Limited 7 CMLO00018-01

2.2 Syntax and Semantics 2 OBJTYPES CONFIGURATION

These options should not be used together and if neither option is present then the
architecture of the host machine will be used to provide a default value.

e The endian big and endian_little attributes indicate that wherever bi-
nary data is present the byte ordering of the data follows the big-endian conven-
tion in which the most significant byte is found in the lowest byte address and that
the bytes of successively lower significance are found in the following bytes in
increasing byte address order (endian big), or that binary date byte ordering
follows the little-endian convention in which the most significant byte is found in
the highest byte address and that the bytes of successively lower significance are
found in the preceding bytes in decreasing byte address order (endian_little
option).

These options should not be used together and if neither option is present then the
architecture of the host machine will be used to provide a default value.

e The bind wsm and bind_bsm attributes describe the manner in which binary
data is assigned to storage locations. The number of bytes required to store the
values of a binary data item will determine the number of bytes assigned to the
data item. These required and actual number of bytes are not always the same
and are a function of whether or not the binary item is signed and whether not the
machine intended to host the data is word-based or byte-based in its assignment
of binary items to storage locations. Most machines are word based in which the
number of bytes of a binary item is always a power of two with the minimum
number of bytes being two, on these machines the assignment of the binding is
said to follow the word storage mode binding (or WSM). This is default, but can
be stated explicitly using the bind_wsm option.

On some machines the assignment of binary data to storage follows the byte stor-
age mode (or BSM) binding. In this mode the minimum number of bytes are used,
but at least one, which will satisfy the sign and precision requested. This binding
is selected with the bind_bsm option.

e Option omit_fillers is used when the processing of any COBOL filler items
are to be excluded from processing. This option automatically sets the hidden
attribute of any filler items [2].

e The verbose option is used to print as much diagnostic and progress informa-
tion as possible and is useful in finding configuration errors.

e The 1azy option is used to delay the loading of symbol tables by the underlying
symbols library [2].

e The extended_arith option is used to relax the original COBOL restriction
on the number of digits in a decimal number from 18 digits to 51 digits. This
option support modern compilers where the number of significant digits supported
is significantly expanded.

Code Magus Limited 8 CMLO00018-01

2.2

Syntax and Semantics 2 OBJTYPES CONFIGURATION

The nulls_as_na option is used to format fields which contain all nulls as the
string NA. This option can also be set by the the corresponding flags value in the
application calling objtypes.

The format_no_hex_data option specifies the OBJTPFL_NOHEXDATA flag,
which in turn specifies the symbols library SYMFL_NOHEXDATA flag for the
underlying meta-data. When this flag is set, formatted character data that does
not map to a graphic in the underlying character set does not cause the item to be
formatted as the hexadecimal values representing the characters. Note this could
cause some output to look messy and difficult to interpret.

The format_non_display_dot option specifies the OBJTPFL_NONDISDOT
flag, which in turn specifies the symbols library flag SYMFL_NONDISDOT flag
for the underlying meta-data. When this flag is set, non-graphic characters that
are not displayed as their hexadecimal values are replaced as a dot (’.”) instead of
a question-mark (’?”).

The format _non_display-mix option specifies the OBJTPFL_NONDISMIX
flag, which in turn specifies the symbols library SYMFL_FORCEHEX flag for
the underlying meta-data. When this flag is set, and flag SYMFL_NOHEXDATA
is effect, then when a non-graphic character is encountered in an alpha field, the
remainder of the content is formatted as the hexadecimal values of the individual
bytes.

The override_length_support option specifies the OBJTPFL_OVRLENSUP
flag, which in turn specifies the symbols library flag SYMFL_OVRLENSUP for
the underlying meta-data. When this flag is set then fields in copybooks with the
LENGTH-clause have their length values overridden by the value specified field
that is the target of the LENGTH-clause (if the value is no greater than the defined
value of the field). And when a field with a LENGTH-clause is updated, then the
length of the data used to update the item is used to update the length value in the
field that is the target of the LENGTH-clause. The LENGTH-clause applies only to
character display data.

The override_length_hidden option specifies the OBJTPFL_HIDEOVRLEN
flag, which in turn specifies the symbo1ls library flag SYMFL_HIDEOVRLEN for
the underlying meta-data. When this flag is set then fields in copybooks which
are the targets of the LENGTH-clause have the HIDDEN attribute set. This pre-
vents these LENGTH-clause target fields from being formatted by an appropriate
formatting function.

This following example illustrates the specification of a little-endian interpretation of
data using the ISO-8 character set. This is an option which might be expected on Intel
based machines:

options endian_little, ascii;

Code Magus Limited 9 CMLO00018-01

2.2 Syntax and Semantics 2 OBJTYPES CONFIGURATION

As with COBOL, copybooks may be included from within other copybooks. In order
to to allow this without the amending the grammar of the imbedded copy-statements,
the location of the copy libraries is supplied by environment variables of the same name
as that of the copy-library name used in the copybook member or the default name
SYSLIB. To support this, and for any other reason that environment variables may need
to be set, preamble SET statements may be used.

SetEnvStatement

—»@—» EnvVarName @» String »@—»

The SetEnvStatement causes the environment variable EnvVarName to be uncondition-
ally set to the resolved value of the String at the point it is encountered in the preamble
of the object types files.

TypelList

Type J
\A TypelList —~ Type

The remainder of the TypeConfig configuration comprises a list of definitions of each of
the types that comprise the collection types.

Type

—»Q:ype)—» TypeName »@itle}—» TypeTitle D

C OptAttributes —~ BookList —)
Q MaplList

OptPredicate »@—»

There are a number of elements which the comprise a single Type. These elements are
for identification (TypeName and TypeTitle); for supplying type specific attributes to the
Type (OptAttributes); for listing the meta-data elements used bye the Type (BookList);
for specifying which pieces of which elements are present in the object of the defined
Type and for specifying any position requirements for these elements; and specifying
an optional predicate which indicates under what conditions a particular object is deter-
mined to be of the Type being defined.

Code Magus Limited 10 CMLO00018-01

2.2 Syntax and Semantics 2 OBJTYPES CONFIGURATION

TypeName

— Ildentifier ——

The format of the TypeName is that of an Identifier and is more suitable for a program-
ming language or machine internal symbol reference to the Type.

TypeTitle

— String ——

The TypeTitle is more suitable for human consumption and is intended to be a short
description of the type. This is not intended for a program to reference the type, but for
a program to qualify a particular type when producing human-readable output.

The following example shows the start of a Type definition in which the internal symbol
and external title names are illustrated:

type types_a

title "First sample type member —--- record type A"
OptAttributes

1{5&‘0 ribute s>—> Attributes j
Attributes

T Attrlbute J >

Attribute »@—» Attributes

The attributes are optional and are indicate by a list of attribute keywords when speci-
fied. The list is initiated with the att ributes keyword.

Attribute

The suppressed attribute is a way to communicate to certain programs that the 7ype is not
to be processed, or that some aspects of the type are not to be processed. For example,
this attribute may indicate to a program using the ob jt ypes library that objects of this
type are to be omitted from formatting; or that they are assumed to be missing from the
input sequence.

Code Magus Limited 11 CMLO00018-01

2.2 Syntax and Semantics 2 OBJTYPES CONFIGURATION

BookList
T BOOk j >
BookList »@—» Book

—»@ 0o k>—> BookName ——

BookName

— Ildentifier ——

Each type must refer to the external meta-data elements that will be used to describe the
mapping of the type. At present the meta-data artefacts being referred to are COBOL
copybooks as indicated by the book keyword. The string representing the Identifier
is used to form a full name of the artefact by editing the Identifier into the path string
option. The completion of the preparation of the Type includes loading the symbols
tables from these referenced artefacts. These symbols are referred to in the remaining
syntactical elements of the Type.

MaplList

Map j
\A MaplList —~ Map

Map

MapName (—~ OptinclusionOrExclusionList — OptBase —~ OptBias ——

It is the Map constructs which pick up a map elements from the meta-data and assigns
it to a portions of the buffer. The elements must be assigned in a manner which de-
scribes all meaningful portions of an object. In this context and map in the meta-data
corresponds, for COBOL copybooks, the 01-level items present in the listed copybooks.
This provides the means of resolving any ambiguity that might be present in the copy-
book because of the presence of multiple O1-levels.

MapName

— Ildentifier ——

The MapName is an Identifier which must be the name of an 01-level item loaded from
one of the listed copybooks.

Code Magus Limited 12 CMLO00018-01

2.2 Syntax and Semantics 2 OBJTYPES CONFIGURATION

OptinclusionOrExclusionList

\A InclusionOrExclusionList J

Apart from the possible of there being some ambiguity in the choice of structures (or
01-levels) in a meta-data artefact (such as a copybook), there is also the possibility that
additional ambiguity might be present amongst the elements contained within that struc-
ture. The InclusionOrExclusionList is the means for resolving such internal ambiguity.

If no InclusionOrExclusionList constructs are present in a map, then the entire map will
be included in the definition of the Type.

InclusionOrExclusionList

j InclusionOrExclusion J -
InclusionOrExclusionList -~ InclusionOrExclusion

InclusionOrExclusion

j OptCondition »G.nclude)—» Variable 7—~
OptCondition »(exclude)—» Variable

Typically, and specifically in the case of COBOL, PL/I, and C/C++, there is a hierar-
chical tree-like structure of meta-data elements each being identified by a symbol. This
parent-child structure allows the recursive grouping of elements within a map with the
leaf nodes having certain elementary types belonging to exactly one parent aggregate el-
ement. Any element within a map, whether elementary or aggregated, can be uniquely
named by supplying a qualified path from the map down to the required element. The
construct Variable referenced in the InclusionOrExclusion is the qualified path to such
an element. Because the include and exclude constructs are processed in order

the resolution of ambiguity can be obtained with just a few include and exclude
clauses.

For example, if A is the aggregate item containing items B, C and D and E; and if only
A.C is present in a particular type, then this can be specified in the following manner:

exclude A —-— this excludes A and all its children, i.e. B, C, D and E.
include A.C -- this includes C and its parent A.
OptCondition

k@» Expression J

Code Magus Limited 13 CMLO00018-01

2.2 Syntax and Semantics 2 OBJTYPES CONFIGURATION

The include and exclude clauses can be conditionally applied. If an include
or exclude clause is prefixed with the Condition and a particular buffer results in a
true evaluation of the Boolean valued Expression then the item will be included if the
Condition prefixes an include clause, and if the Expression evaluates to false the
item will be excluded. If the Condition prefixes an exclude clause, then the opposite
behaviour will result.

Implementation note: While syntactically valid, the present imple-
mentation does not evaluate the Boolean-valued Expression and the item
is unconditionally included or excluded depending on the presence of the
include or exclude clause.

OptBase

L)

Base

—»@ as e>—> ldentifier

Some of the elements required in the determination of the 7ype of an object may not be
present in that object’s buffer. For example, if a record had a particular type because it
had a sequence number which was not contained within the record itself, then the type
Type definition can reference an externally named map. The Base construct indicates
that the corresponding Map is external to the object being described. The following
example illustrates this:

map control_data base control

OptBias

k Bias j
—»@ias}—» Expression ——

The base of the offsets in a meta-data map are zero-based and their position in the object
being defined might be offset from this by some value which may be a constant or may
be a variable offset by some amount known only by considering the current object. This
bias value is used to adjust all offsets in the map and allows different portions of an
object to be mapped by different and independent maps.

map test_map_a_trailer include test_map_a_trailer bias 11

Code Magus Limited 14 CMLO00018-01

2.2 Syntax and Semantics 2 OBJTYPES CONFIGURATION

OptPredicate

_@he@» Expression j

If the when clause is present in the OptPredicate construct then a given object has the
corresponding Type if the Boolean-valued expression evaluates to true. If the OptPredi-
cate 1s empty then the expression is assumed to evaluate to true. The objtypes library
evaluates this expression with a given object type when determining the 7ype of an ob-
ject. The Boolean-valued Expression can be over any of the elementary elements of
the listed Maps whether or not those elements are covered by include or exclude
clauses, in particular, elementary items may come from based Maps. This is illustrated
in the following example:

type types_a
title "First sample type member —--- record type A"
book controls, book testbook
map control_data base control
map test_map_a include test_map_a
map test_map_a_trailer include test_map_a_trailer bias 11
when (control_data.direction = "I")
and (test_map_a.ra_record_type_a = "A");

In this example, the book control could look something like:

01 control_data.
03 direction pic x.

and the book testbook could look something like:

01 test-map-a.

03 ra-record-type-a pic x value "A".
03 ra-test-field-1 pic x(4).

88 ra-test-field-1l-cond value "AAAA".
03 ra-test-field-2 pic x(1).
03 ra-test—-field-3 pic s9(4) comp.
03 ra-test—-field-4 pic s9(4) comp-3.

01 test-map-a-trailer.
03 ra-test-field-5 occurs 3.
05 ra-test-subfield-5 pic s9(4) comp occurs 3.
01 test-map-b.

03 rb-record-type-b pic x value "B".
03 rb-test-field-1 pic x(4).

88 rb-test-field-1-cond value "BBBB".
03 rb-test-field-2 pic x(1).
03 rb-test-field-3 pic s9(4) comp.
03 rb-test-field-4 pic s9(4) comp-3.

01 test-map-b-trailer.
03 rb-test-field-5 occurs 3.
05 rb-test-subfield-5 pic s9(4) comp occurs 3.

Code Magus Limited 15 CMLO00018-01

2.2 Syntax and Semantics

2 OBJTYPES CONFIGURATION

Expression

— " Expression @» Expression —
- Expression »@—» Expression I
- Expression »@—» Expression —
N Expression »@—» Expression I
- Expression Expression I
- Expression Expression I
- Expression Expression I
- Expression »@—» Expression I
- Expression @» Expression I
- Expression »@—» Expression —
- Expression @ Expression I
- Expression »@—» Expression I
- Expression @ Expression I
- Expression »(like)—» LeafString -
K>@—> Expression |
\@—» Expression]
Expression j
(- Primary j

Wherever an Expression is admissible in a Type definition it can be an arbitrary Expres-
sion, provided it is syntactically correct, as described here, and that the result type of the
Expression has the expected type (Boolean or integer valued). The restrictions on the
sub-expressions in these expressions only needs to satisfy the types of sub-expression
required by the specified operators.

Code Magus Limited

16

CMLO00018-01

2.2 Syntax and Semantics 2 OBJTYPES CONFIGURATION

Associates Operators

left =<, >, <> <=,>= 1in
left +, -, or

left *, /,div, and, mod
right not

right unary +, unary —

Table 1: Operator precedence and associativity

Ambiguity in the evaluation order of operands within an Expression is resolved by con-
sidering the relative precedence of the operators concerned. The 1 ike operator is non-
associative and the right operand of this operator must be a string literal. This string
literal is interpreted as a regular expression. The 1ike operator is Boolean valued,
evaluating to true if left-hand operand (which is expected to be a string) matches the
regular expression; otherwise the 11ike operator evaluates to false.

The other operators and their precedence is given in Table 1. The precedence increases
going down the table.

Primary

LeafLiteral -

LeafVar

Expression @
Identifier @» ExpressionList

LeafLiteral

T Leaﬂ\’umberj—~
LeafString

LeafNumber

— Number ——

A Number has the format described in Section 2.1.1.

LeafString

j String J -
HexaDecimalString

Code Magus Limited 17 CMLO00018-01

3 EXAMPLE

The String and HexaDecimalString formats are described in Section 2.1.1.

LeafVar

— Variable —

Variable

j IdentifierOptindex j -
Variable »@—» IdentifierOptindex

IdentifierOptindex

T Identifier -

Identifier @—» Number @j

A Variable is a dot-separated list of Identifiers. The list forms a path from a root element
Identifier (for example a Map name) followed by a ’.” and an immediate child of that
Identifier, and so on. Each Identifier is optionally followed by a constant index between
square brackets, which denotes the specific item amongst an array of multiply occurring
items. This is the means by which all elementary items referenced in Expressions; and
the means by which aggregate and elementary items are referenced in include and

exclude clauses.

ExpressionList
Ti Expression J -
ExpressionList »@—» Expression

3 Example

This document concludes with a full, but fictitious, example. The example, describes a
sequence which is supplied by a sample program. In this example, a named buffer is
used to assist the determination of objects of various types as the content of the buffer
alone cannot be used to determine the particular object type:

-— File: testtype.objtypes

—-— Test object type specification processed by testprog.c. This collection
-— of types is required by the testprog.c program to test the type

—— collection library objtypes.

—— Author: Stephen R. Donaldson.

Code Magus Limited 18 CMLO00018-01

3 EXAMPLE

—— Copyright (c) 2004 Code Magus Limited. All rights reserved.

—— S$Author: stephen $

—-— S$Date: 2025/04/15 10:49:20 $

-— $Id: objtpuref.tex,v 1.14 2025/04/15 10:49:20 stephen Exp $
-— SName: $

—— SRevision: 1.14 $

—-— S$State: Exp $

—-— $Log: objtpuref.tex,v $

—-— Revision 1.14 2025/04/15 10:49:20 stephen

—— An optional LENGTH-clause has been added to the
—-— definitions of a data item. The LENGTH-clause

—— specifies a field that validly encodes integers
—-— (display or binary) that is used as an override
—— field for ALPHA fields (PIC X(n)). When effective
—-— the override length modifies the field length

—— when formatting the field, and when updating

—— the field an implicit update to the length field
—-— 1s performaed.

—-— The new clause has been added to the COBOL copybook parser;
—— additional flags have been added to the SYMBOLS library

—-— to control the behaviour of the LENGtH-clause. The defualt
—— 1is that the LENGTH-clause has no effect on processing. The
-— new flags added to the symbols library flags are:

—-— SYMFIL_OVRLENSUP and SYMFIL_HIDEOVRLEN. Flag SYMBFL_OVRLENSUP
—— enables processing of the LENGTH-clause, and flag

—-— SYMFL_HIDEOVRLEN causes the target of the LENGTH-clause

—-— fields to be treated as HIDDEN.

—— In addition to the additional flags in the symbols library,
—-— there are additional flags in the objtypes library that

—— correspond to the symbols flags (which, when set, will

—— cause the corresponding corresponding symbols flags to be
—— set. These objtypes flags are OBJTPFL_OVRLENSUP and

—— OBJTPFL_HIDEOVRLEN.

—— Options have been added to objtypes config parser which
—-— set these flags when the objtypes are parsed. These
—-— Options are override_length_support override_length_hidden.

—-— Revision 1.13 2018/10/19 14:35:58 hayward
—— Correct broken links (take 2)

-— Revision 1.12 2018/10/19 14:12:50 release
—— Sort out missing bibliography statement.

—-— Revision 1.11 2016/05/18 16:28:44 stephen
—— Cleanup example in document

Code Magus Limited 19 CMLO00018-01

3 EXAMPLE

-— Revision 1.10 2016/04/02 10:00:37 stephen

—-— Add flag value OBJTPFL_NULLS_NA to flags in objtypes_open () and add

—— option nulls_as_na to options in objtypes configuration to set the

-— flag from an objtypes file. Add code to replace null formatted strings
—-— with NA when formatting a field.

—-— Revision 1.9 2011/07/04 09:48:22 hayward
—— Make sure that \cite{} commands are
—-— followed by a non breaking space.

-— Revision 1.8 2010/01/25 09:59:56 hayward
—— Add rail to Make and fix lines
—-— overlapping the right hand margin.

—-— Revision 1.7 2009/11/30 13:54:53 hayward
—— Change to new title page.

—— Revision 1.6 2009/01/16 12:05:25 stephen
—— Add support for environment variable setting from objtypes file.

-— Revision 1.5 2005/03/30 21:19:27 stephen
—— Add support for inline constant indexing of variables

—— Revision 1.4 2005/03/29 13:32:40 stephen
—— ASCII based machine rebuild

—-— Revision 1.3 2004/10/31 14:21:20 stephen
—-— Rebuild and remove tabs from source

—— Revision 1.2 2004/10/17 15:42:10 stephen
—-— User reference doc correction

-— Revision 1.9 2004/06/30 21:37:39 stephen
—— Allow long identifier names

—-— Revision 1.8 2004/06/17 19:12:26 stephen
—— Updates from May/June JHB

—— Revision 1.6 2004/05/19 05:00:52 stephen
—— Locate leaf node on name and index. Also maintain actual type length

-— Revision 1.5 2004/05/18 11:18:02 stephen
—— Windows changes

—— Revision 1.4 2004/05/10 20:41:38 stephen
—— Add base buffers to object types library

-— Revision 1.3 2004/04/19 22:29:30 stephen
—-— New insert to take maps into account for buffer position

-— Revision 1.2 2004/03/15 18:53:54 stephen
-— Fix byacc options and testprog must check types returned

Code Magus Limited 20 CMLO00018-01

REFERENCES REFERENCES

—-— Revision 1.1 2004/01/02 22:18:30 stephen
—— Further development and test files

-— path "%s.cbb";
path "/home/stephen/objtypes/%$s.cbb";
—-— options endian_little, ascii;

type types_a
title "First sample type member —--- record type A"
book controls, book testbook
map control_data base control
map test_map_a include test_map_a
map test_map_a_trailer include test_map_a_trailer bias 11
when (control_data.direction = 'I')
and (test_map_a.ra_record_type_a = "A");

type types_b
title "Second sample type member —--- record type B"
book controls, book testbook
map control_data base control
map test_map_b include test_map_b
map test_map_b_trailer include test_map_b_trailer bias 11
when (control_data.direction = "I')
and (test_map_b.rb_record_type_b = "B");

type types_a_record
title "First sample type member —--- record type A"
book testbook
map test_map_a include test_map_a
map test_map_a_trailer include test_map_a_trailer bias 11
when (test_map_a.ra_record_type_a = "A");

type types_b_record
title "Second sample type member —--- record type B"
book testbook
map test_map_b include test_map_b
map test_map_b_trailer include test_map_b_trailer bias 11
when (test_map_b.rb_record_type_b = "B");

References

[1] Code Magus Limited. objtypes: Configuring for Object Recognition, Generation
and Manipulation. CML Document CML00018-01, Code Magus Limited, July
2008. PDF.

[2] Code Magus Limited. Symbol Table Loading From Copybooks. CML Document
CML00039-01, Code Magus Limited, July 2008. PDF.

Code Magus Limited 21 CMLO00018-01

http://www.codemagus.com/documents/objtpuref_CML0001801.pdf
http://www.codemagus.com/documents/symref_CML0003901.pdf

	1 Introduction
	2 objtypes Configuration
	2.1 Lexical Elements
	2.1.1 Literal Constants
	2.1.2 Reserved Words
	2.1.3 Composite Operators
	2.1.4 Identifiers
	2.1.5 Other Characters

	2.2 Syntax and Semantics

	3 Example

