
debugapi: Debug API User Guide and Reference
Version 1

CML00060-01

Code Magus Limited (England reg. no. 4024745)
Number 6, 69 Woodstock Road

Oxford, OX2 6EY, United Kingdom
www.codemagus.com

Copyright c⃝ 2014 by Code Magus Limited
All rights reserved

December 15, 2020



CONTENTS CONTENTS

Contents
1 Introduction 2

2 Debug API Command Interface 5
2.1 The HELP-Command . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 The WHERE-Command . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 The BREAK-Command . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4 The DELETE-Command . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.5 The SHOW-Command . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.6 The STEPINTO-Command . . . . . . . . . . . . . . . . . . . . . . . . 10
2.7 The STEPOVER-Command . . . . . . . . . . . . . . . . . . . . . . . . 11
2.8 The STEPOUT-Command . . . . . . . . . . . . . . . . . . . . . . . . 12
2.9 The SET-Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.10 The QUIT-Command . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.11 The ABORT-Command . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.12 The CONTINUE-Command . . . . . . . . . . . . . . . . . . . . . . . . 15
2.13 The LISTCHILDREN-Command . . . . . . . . . . . . . . . . . . . . 15
2.14 The LIST-Command . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 Debug API Caller Interface 18

Code Magus Limited 1 CML00060-01



1 INTRODUCTION

1 Introduction

The Code Magus Limited debugapi Library is used in script engines to implement
a debugging interface for that script engine. The actual debugger is implemented as a
combination of the functions of the script engine and the debugapi library.

The debugapi library provides an environment for interacting with a script being
debugged by providing a TCP/IP command interface to the script engine running a script
in debug mode. The commands passed through to the command interface are parsed by
the debugapi library and any interaction with the script execution environment is
accomplished by the debugapi library calling functions supplied by the script engine.

Figure 1 on page 2 illustrates the relationship of the debugapi library and the script
engine into which the debugapi has been integrated. The integration of the debugapi
into a script engine makes a socket access point available for debug commands.

Compiled Script

Compile Script

Debug Support Functions

D
eb

ug
 A

PI
 L

IB

TCP/IP Socket

Running Script State

Script Text

C
om

m
an

d 
Pa

rs
er

Script Engine

Figure 1: Relationship of debugapi library and script engine and exposed socket
interface for debug commands

The debugapi library is written in a portable style, and because user interaction with
the debugapi library is through TCP/IP, debugging is supported across many system
types, including Linux/Unix, z/OS, Windows, and Stratus VOS.

Code Magus Limited 2 CML00060-01



1 INTRODUCTION

The style of communication used by the debugapi library when interacting through
the user interface is intended to allow the item being debugged, and hence the debug
session, to execute within an Integrated Development Environment (or IDE). To support
this, the initialisation of the debugapi within a script engine needs to include some
indication of the means by which the user or environment (if it is an IDE) communicates
with the debugger. This is illustrated in Figure 2 on page 3. The debugapi library
will connect to a given host and port number, or will bind to a given or non-specific
host and/or port number and then listen on the socket for an incoming debug session.
Using this scheme the debugapi library also supports remote debugging as illustrated
in figure 3 on page 4.

Script Engine

IDE

IDE Debugger Interface

Figure 2: Integration of the script engine into an IDE supporting a GUI for debugging
using the debugapi

The commands to the debugger, which are entered as clear text by the user or by an IDE
through the TCP/IP interface, are parsed and interpreted by the debugapi interface
and or the script engine which provides appropriate call-back functions to support this.

The commands are designed to be simple and their responses are intended to be parsed
in turn by the IDE issuing them, as well as to be interpreted by a user of the interface.

Code Magus Limited 3 CML00060-01



1 INTRODUCTION

Script Engine

Figure 3: Instance of the debugapi into a script engine provides support for remote
debugging

Code Magus Limited 4 CML00060-01



2 DEBUG API COMMAND INTERFACE

2 Debug API Command Interface

This section describes the debug commands that can be used once the call interface and
the socket interface have been established.

The commands that a user (either a person or an integrated IDE) would issue over the
debugapi debug socket are all clear text commands and all responses are clear text
responses. The functionality available, and hence the types of commands available,
is similar to what one would expect from any debugger. Commands are provided for
setting and clearing break points; showing and setting the values of variables; stepping
into, over and out of the sequences of statements; showing the current location; etc.

Each command starts with a verb indicating the required function. A command may
be entered in either upper or lower case, or in a mixed case. The case of the verb has
no significance, but the case of the operands may have some significance and, in those
cases, the context will determine this. For example, the name of a file will have some
significance depending on whether this has some significance to the local machine. Most
command verbs also have abbreviations simplifying usage of the debugapi command
interface.

The debugapi always prompts the user of the interface, indicating that the script in
the script engine being debugged is in the stopped state and that a debug command may
be entered. This prompt is indicated by the string “DEBUG>” as illustrated below:

[stephen@nomad ˜]$ telnet localhost 59212
Trying 127.0.0.1...
Connected to localhost.localdomain (127.0.0.1).
Escape character is ’ˆ]’.
VERIFY: Code Magus Limited Verify Rule Check System V1.0
build 2010-02-23-16.19.46
CASATEST.vcf:1278
DEBUG>

A debug session is made up of a series of commands that interact with the script engine
during the execution of a script. There are two special cases of input to the debugapi
command interface. Comments may be entered at the debug command prompt, and
are introduced using the # character, and continue until the end of the line. An empty
command string indicates that the last successful command (if such a command exists)
is to be re-executed.

DebugSession

- DebugCommand�
�

�
�

-

Code Magus Limited 5 CML00060-01



2.1 The HELP-Command 2 DEBUG API COMMAND INTERFACE

DebugCommand

- HelpCommand�
�- WhereCommand

�- BreakCommand

�- DeleteCommand

�- ShowCommand

�- StepIntoCommand

�- StepOverCommand

�- FinishCommand

�- SetCommand

�- QuitCommand

�- AbortCommand

�- ContinueCommand

�- List - Command

�- ListChildrenCommand

�
�
�
�
�
�
�
�
�
�
�
�
�
�

-

2.1 The HELP-Command

The HELP-command provides basic help on available commands. Entering HELP on
debugapi command line on its own displays a list of available commands for which
there is available help:

DEBUG> help
Enter the following on a line by itself:
Try HELP {WHERE|BREAK|DELETE|SHOW|STEPINTO|STEPOVER|STEPOUT|SET|QUIT|CONTINUE}
This will give help about the specific command.
DEBUG>

The HELP-command may be abbreviated as “H”:

DEBUG> h where
Enter the following on a line by itself:

Code Magus Limited 6 CML00060-01



2.2 The WHERE-Command 2 DEBUG API COMMAND INTERFACE

WHERE
Show the location of the next executable statement.
DEBUG>

The command for which help is required can also be abbreviated:

DEBUG> h w
Enter the following on a line by itself:
WHERE
Show the location of the next executable statement.
DEBUG>

HelpCommand

- help
�� ���

�- help
�� ��- where

�� ���- help
�� ��- break

�� ���- help
�� ��- delete

�� ���- help
�� ��- show

�� ���- help
�� ��- stepinto

�� ���- help
�� ��- stepover

�� ���- help
�� ��- stepout

�� ���- help
�� ��- set

�� ���- help
�� ��- quit

�� ���- help
�� ��- abort

�� ���- help
�� ��- continue

�� ���- help
�� ��- list

�� ���- help
�� ��- listchildren

�� ��

�
�
�
�
�
�
�
�
�
�
�
�
�
�

-

2.2 The WHERE-Command

The WHERE-command displays the file name and line number in that file of the current
statement execution position. This is the position of the statement that would ordinarily

Code Magus Limited 7 CML00060-01



2.3 The BREAK-Command 2 DEBUG API COMMAND INTERFACE

be the next statement to execute. For example, the result of the following WHERE-
command

DEBUG> where
CASATEST.vcf:1278
DEBUG>

indicates that the next statement in the script currently in debug mode within the script
engine is in file CASATEST.vcf and line number 1278.

The WHERE-command may be abbreviated as “W”.

WhereCommand

- where
�� ��-

2.3 The BREAK-Command

The BREAK-command is used to set a break point. It should be possible to set a break
point on any executable statement. The BREAK-command responds with the file name
and line number of the executable statement that the actual break point was set on. This
may be something slightly different from the break point requested. For example, it is
acceptable for a break point requested on a non-executable line, or a line on which an
executable statement does not start, to be set on the next executable statement at which
a break point can be set or on the position at which the executable statement does start.

DEBUG> break
BREAKPOINT SET AT "CASATEST.vcf":1278
DEBUG>

DEBUG> break "CASATEST.vcf":1291
BREAKPOINT SET AT CASATEST.vcf:1291
DEBUG>

The BREAK-command may be abbreviated as “B”.

BreakCommand

- break
�� ���

�- break
�� ��- Number

�- break
�� ��- String - :

����- Number

�
�
�

-

If the file name is not supplied on the BREAK-command then the name of the current file
is used. The current file is the file containing the next statement that will be executed.
If the line number is not supplied on the BREAK-command then the line number of the
next statement in the current file will be used.

Code Magus Limited 8 CML00060-01



2.4 The DELETE-Command 2 DEBUG API COMMAND INTERFACE

2.4 The DELETE-Command

The DELETE-command is used to remove a previously set break point. The command
responds with the position of the executable statement (file name and line number) at
which the actual break point was removed. This might be different from the position
requested on the DELETE-command.

DEBUG> delete "CASATEST.vcf":1278
BREAKPOINT DELETED AT "CASATEST.vcf":1278
DEBUG>

The DELETE-command may be abbreviated as “DEL”.

DeleteCommand

- delete
�� ���

�- delete
�� ��- Number

�- delete
�� ��- String - :

����- Number

�
�
�

-

If the file name is not supplied on the DELETE-command then the name of the current
file is used. The current file is the file containing the next statement that will be executed.
If the line number is not supplied on the DELETE-command then the line number of the
next statement in the current file will be used.

2.5 The SHOW-Command

The SHOW-command takes as an argument a variable name. If this variable exists and
is currently within context in terms of the script being debugged, then the command
responds with the value of that variable.

DEBUG> show total_system_fee
VALUE OF "total_system_fee" IS 17810.00
DEBUG>

DEBUG> show test_case.JOIN_RECORD.JOIN_CHARGE
VALUE OF "test_case.JOIN_RECORD.JOIN_CHARGE" IS 80.00
DEBUG>

The SHOW-command may be abbreviated as “S”.

ShowCommand

- show
�� ��- Variable -

Code Magus Limited 9 CML00060-01



2.6 The STEPINTO-Command 2 DEBUG API COMMAND INTERFACE

Variable

- IdentifierOptIndex�
�- IndexedString

�- Variable - .
����- IdentifierOptIndex

�- Variable - :
����- IdentifierOptIndex

�
�
�
�

-

IdentifierOptIndex

- Identifier�
�- Identifier - [

����- Number - ]
����

�
�

-

IndexedString

- [
����- String - ]

����-

2.6 The STEPINTO-Command

The STEPINTO-command causes the next statement to be executed when the debugger
is in the stopped state. Additionally, if the execution of the next statement being exe-
cuted causes control to appear elsewhere within the script being debugged (for example,
if the execution of an assignment statement included a script function call requiring eval-
uation), then a break point would be taken at the start of that function. Typically, this
break point should be a soft break point in that it should be automatically removed once
it has been triggered.

In the following example, assume the following script fragment:

CASATEST.vcf:1276: function sq(n : number) : number;
CASATEST.vcf:1277: begin
CASATEST.vcf:1278: sq := n*n
CASATEST.vcf:1279: end;
CASATEST.vcf:1280:
CASATEST.vcf:1281: procedure inittest();
CASATEST.vcf:1282: local square : number;
CASATEST.vcf:1283: begin
CASATEST.vcf:1284: square := sq(4);
CASATEST.vcf:1285: calculated_fee := 0
CASATEST.vcf:1286: end;

Where the debugger has stopped at CASATEST.vcf:1284 (possibly because of a
break point):

STOPPED AT "CASATEST.vcf":1284

Code Magus Limited 10 CML00060-01



2.7 The STEPOVER-Command 2 DEBUG API COMMAND INTERFACE

DEBUG>

Entering the STEPINTO-command here should result in a break point being taken at
CASATEST.vcf:1278:

DEBUG> stepinto
BREAKPOINT STOPPED AT "CASATEST.vcf":1278
DEBUG>

The STEPINTO-command may be abbreviated as “SI”.

StepIntoCommand

- stepinto
�� ��-

2.7 The STEPOVER-Command

The STEPINTO-command causes the next statement to be executed when the debugger
is in the stopped state. If the execution of the next statement being executed causes
control to appear elsewhere within the script being debugged (for example, if the exe-
cution of an assignment statement included a script function call requiring evaluation),
then these portions of the script will be performed while the debugger is in the execut-
ing mode and the debugger API will not be presented with a break point unless a break
point had been previously set using the break command.

In the following example, assume the following script fragment:

CASATEST.vcf:1276: function sq(n : number) : number;
CASATEST.vcf:1277: begin
CASATEST.vcf:1278: sq := n*n
CASATEST.vcf:1279: end;
CASATEST.vcf:1280:
CASATEST.vcf:1281: procedure inittest();
CASATEST.vcf:1282: local square : number;
CASATEST.vcf:1283: begin
CASATEST.vcf:1284: square := sq(4);
CASATEST.vcf:1285: calculated_fee := 0
CASATEST.vcf:1286: end;

Where the debugger has stopped at CASATEST.vcf:1284 (possibly because of a
break point):

STOPPED AT "CASATEST.vcf":1284
DEBUG>

Entering the STEPOVER-command here should result in a break point being taken at
CASATEST.vcf:1285:

STOPPED AT "CASATEST.vcf":1284
DEBUG> stepover
BREAKPOINT STOPPED AT "CASATEST.vcf":1285

Code Magus Limited 11 CML00060-01



2.8 The STEPOUT-Command 2 DEBUG API COMMAND INTERFACE

DEBUG>

The STEPOVER-command may be abbreviated as “SO”.

StepOverCommand

- stepover
�� ��-

2.8 The STEPOUT-Command

The STEPOUT-command causes execution to continue to the end of the current chain of
sequential instructions. The effect of the STEPOUT-command is to cause a soft break
point (this is a break point that once triggered, is automatically deleted) to be set at
the first statement following a loop (if the script is currently executing within a loop);
the first statement following the then-part or else-part of an if-statement (if the script is
currently executing the then-part or else-part of an if-statement); or the first statement
following the statement that caused a function to be called (if the script is currently
executing within a called function). If none of these are the case, then the STEPOUT-
command has no effect.

In the following example, assume the following script fragment:

CASATEST.vcf:1276: function sq(n : number) : number;
CASATEST.vcf:1277: begin
CASATEST.vcf:1278: sq := n*n
CASATEST.vcf:1279: end;
CASATEST.vcf:1280:
CASATEST.vcf:1281: procedure inittest();
CASATEST.vcf:1282: local square : number;
CASATEST.vcf:1283: begin
CASATEST.vcf:1284: square := sq(4);
CASATEST.vcf:1285: calculated_fee := 0
CASATEST.vcf:1286: end;

Where the debugger has stopped at CASATEST.vcf:1284 (possibly because of a
break point):

STOPPED AT "CASATEST.vcf":1284
DEBUG>

A break point is then set at the (first and only) executable statement of the function sq,
and execution allowed to continue:

DEBUG> b 1278
BREAKPOINT SET AT "CASATEST.vcf":1278
DEBUG> c

The break point inside sq is then triggered, and execution is allowed to continue again
by issuing the STEPOUT-command. This time execution stops at the soft, and implied,
break point, following the assignment-statement containing the call to the sq function:

Code Magus Limited 12 CML00060-01



2.9 The SET-Command 2 DEBUG API COMMAND INTERFACE

BREAKPOINT STOPPED AT "CASATEST.vcf":1278
DEBUG> stepout
DEBUG>
BREAKPOINT STOPPED AT "CASATEST.vcf":1285
DEBUG>

The STEPOUT-command may be abbreviated as “F” or “O”.

StepoutCommand

- stepout
�� ��-

2.9 The SET-Command

The SET-command is used to assign values to script variables at points in the execution
of scripts being debugged. The debugger should be in the stopped-state when issuing
the SET-command. The value to be assigned to the named variable is determined by
an expression. This expression is evaluated within the stack of currently open scopes
and contexts of the script being executed. For example, if the script is stopped in a
function being evaluated, then a variable name in the expression which matches a local
variable or formal parameter name of that function refers to that local variable or formal
parameter, and not to any global variables which might have the same name.

The example below assumes the following script fragment where the debugger has ini-
tially stopped at CASATEST.vcf:1287, possibly because of a break point:

CASATEST.vcf:1276 function sq(n : number) : number;
CASATEST.vcf:1277 local res : number;
CASATEST.vcf:1278 begin
CASATEST.vcf:1279 res := n*n;
CASATEST.vcf:1280 print("sq(",n,") = ",res);
CASATEST.vcf:1281 sq := res
CASATEST.vcf:1282 end;
CASATEST.vcf:1283
CASATEST.vcf:1284 procedure inittest();
CASATEST.vcf:1285 local square : number;
CASATEST.vcf:1286 begin
CASATEST.vcf:1287 square := sq(4);
CASATEST.vcf:1288 print("sq(4) = ",square);
CASATEST.vcf:1289 calculated_fee := 0
CASATEST.vcf:1290 end;

The call to the function sq is stepped into and the value of the formal parameter n
can be verified to have the expected value as an argument when used on the function
invocation:

STOPPED AT "CASATEST.vcf":1287
DEBUG> stepinto
DEBUG>

Code Magus Limited 13 CML00060-01



2.10 The QUIT-Command 2 DEBUG API COMMAND INTERFACE

BREAKPOINT STOPPED AT "CASATEST.vcf":1279
DEBUG> show n
VALUE OF "n" IS 4
DEBUG>

The SET-command can be used to change the value of the parameter within the called
function, and the function evaluation allowed to continue using the STEPOUT-command.
This causes the executing script to stop at the implied soft break point at CASATEST.vcf:1288.

DEBUG> set n = 16
Variable n set to 16
DEBUG> stepout
DEBUG>
BREAKPOINT STOPPED AT "CASATEST.vcf":1288

Since the square of the number was assigned to the local variable square, we can
demonstrate that the function sq was applied to the debugger manipulated value of 16
rather than the script supplied argument value of 4:

DEBUG> show square
VALUE OF square" IS 256
DEBUG>

SetCommand

- set
�� ��- Variable - =

����- Expression -

In the above, Expression is the expression text that will be evaluated and assigned to
the given Variable. The required grammar of the Expression is documented in expeval:
Expression Evaluation API Reference [1].

2.10 The QUIT-Command

The quit-command signals the end of the debugging session by turning off debugging
mode and allowing the script to continue executing without further intervention of the
debugger. No further commands on the debug command interface will be interpreted.

QuitCommand

- quit
�� ��-

2.11 The ABORT-Command

The ABORT-command calls the library function abort(3) to terminate the process
running the script engine that is interpreting the script. Depending on environment
and/or shell settings this produces a core file which may be useful in diagnosing script
engine or environment problems.

Code Magus Limited 14 CML00060-01



2.12 The CONTINUE-Command 2 DEBUG API COMMAND INTERFACE

AbortCommand

- abort
�� ��-

2.12 The CONTINUE-Command

The CONTINUE-command is used to switch the debugger into the executing state from
the stopped state. This allows normal execution of the script to continue until the next
break point is reached, or if no further break points are encountered, until the end of the
script is reached.

The CONTINUE-command may be abbreviated as “C”.

ContinueCommand

- continue
�� ��-

2.13 The LISTCHILDREN-Command

The LISTCHILDREN-command is used to navigate the variable tree of a scripting lan-
guage which has support for this operation. Entering the LISTCHILDREN command
without a variable name results in the names of the root variable’s children being re-
turned. Each child can then be listed by specifying the childnode’s name as the operand
of the LISTCHILDREN command. In this way, each leaf node in the variable tree can
be visited.

The LISTCHILDREN-command may be abbreviated as “LISTC” or “LC”.

DEBUG> listc
CHILD "A" TYPE "NODE"
CHILD "B" TYPE "NODE"
DEBUG>

DEBUG> listc A
CHILD "C" TYPE "PROPERTY"
DEBUG>

ListChildrenCommand

- listchildren
�� ���

�- listchildren
�� ��- Variable

�
�

-

Code Magus Limited 15 CML00060-01



2.14 The LIST-Command 2 DEBUG API COMMAND INTERFACE

2.14 The LIST-Command

The LIST-command is used to display the source of the script. Entering the LIST
command without operands results in the source code around the current point of interest
being displayed. The point of interest is set the line number at which the script is
currently stopped. After executing the LIST command the point of interest is changed
to the last line displayed. The point of interest can be changed by the list command
if either the line number or source file and line number are given as operands to the
command.

The LIST-command may be abbreviated as “L”.

STOPPED AT "../configs/UNITTEST.vfy":1701
DEBUG> list
01696 end;
01697
01698 procedure inittest();
01699 local square : number;
01700 begin
01701 square := sq(4);
01702 -- print("sq(4) = ",square);
01703 calculated_fee := 0
01704 end;
01705
DEBUG> l 1703
01698 procedure inittest();
01699 local square : number;
01700 begin
01701 square := sq(4);
01702 -- print("sq(4) = ",square);
01703 calculated_fee := 0
01704 end;
01705
01706 procedure validate();
01707 begin
DEBUG> l
01707 begin
01708 total_system_fee := total_system_fee+test_case.JOIN_RECORD.JOIN_CHARGE;
01709 total_tested_fee := total_tested_fee+calculated_fee;
01710 if calculated_fee = test_case.JOIN_RECORD.JOIN_CHARGE then pass
01711 else fail
01712 end;
01713
01714 procedure set_fee(fee_amount : number);
01715 local maxamt : number;
01716 begin

DEBUG> l "../configs/UNITTEST.vfy":1600
01595 title "DCAR_4_7"
01596 where (test_case.JOIN_RECORD.JOIN_CLUSTER = 4)
01597 or (test_case.JOIN_RECORD.JOIN_CLUSTER = 7)
01598

Code Magus Limited 16 CML00060-01



2.14 The LIST-Command 2 DEBUG API COMMAND INTERFACE

01599 ;
01600
01601 -- 1,"Retail"
01602 -- 2,"SME"
01603 -- 3,"Business Bank"
01604 -- 4,"Corporate"
DEBUG>

ListCommand

- list
�� ���

�- list
�� ��- Number

�- list
�� ��- String - :

����- Number

�
�
�

-

Code Magus Limited 17 CML00060-01



3 DEBUG API CALLER INTERFACE

3 Debug API Caller Interface

The caller of the debugapi library is responsible for making the appropriate calls to
instantiate a debug environment and to populate the corresponding debug structure with
the functions that interface to the script run-time engine. It is also the responsibility of
the caller of the debugapi functions (in other words the responsibility of the particular
script engine) to supply to the library the required flags and information for establishing
the socket interface over which the user of the debug interface issues debug commands
and expects to see responses to those commands.

Code Magus Limited 18 CML00060-01



REFERENCES REFERENCES

References

[1] expeval: Expression Evaluation API Reference. CML Document CML00052-01,
Code Magus Limited, November 2009. PDF.

Code Magus Limited 19 CML00060-01

http://www.codemagus.com/documents/expeval_CML0005201.pdf

	1 Introduction
	2 Debug API Command Interface
	2.1 The HELP-Command
	2.2 The WHERE-Command
	2.3 The BREAK-Command
	2.4 The DELETE-Command
	2.5 The SHOW-Command
	2.6 The STEPINTO-Command
	2.7 The STEPOVER-Command
	2.8 The STEPOUT-Command
	2.9 The SET-Command
	2.10 The QUIT-Command
	2.11 The ABORT-Command
	2.12 The CONTINUE-Command
	2.13 The LISTCHILDREN-Command
	2.14 The LIST-Command

	3 Debug API Caller Interface

