&9 CODE MAGUS

XML Interface Portal - Thistle User Manual
Version 1

CMLO00035-01

Code Magus Limited (England reg. no. 4024745)
Number 6, 69 Woodstock Road
Oxford, OX2 6EY, United Kingdom
www . codemagus .com
Copyright (©) 2009 Code Magus Limited
All rights reserved

% January 6, 2010

CONTENTS

Contents

1 Introduction
1.1 Overview of the XIP

1.2 Introduction to XML Documents
1.3 Example of an XML document
1.3.1 XMLElementso,
1.3.2 XML Attributes e

2 User Guide

2.1 Thistle representation of the XML example

2.2 Using the XML Portal

2.2.1 Creating XML documents from Thistle objects
2.2.2 Creating Thistle objects from XML documents

3 Reference
3.1 Thistle XIP methods
3.1.1 GetDocument
3.1.2 GetTree . . .

4 Appendix
4.1 Examples

4.1.1 Afull Thistlescript o v

LW W W NN

NN (U U, .

N &

1 INTRODUCTION 2
1 Introduction

1.1 Overview of the XIP

The XML Interface Portal (XIP) provides functionality for Thistle to manipulate XML
documents.

The XIP handles the tasks of actually creating the XML, validating the XML, and con-
verting XML documents into Thistle scripts and vice versa.

This allows he user to create XML documents using normal Thistle scripts, or convert
real XML buffers into Thistle structures. From within Eresia, any of the other portals
can be used in conjunction with the XML Portal to perform testing tasks.

Some examples of using other portals may be to use Thistle scripts in Eresia to

Populate XML documents with data from a spreadsheet using the Excel Portal

Write XML documents to buffers using a File Access Method

Send XML over a network by using a Network Control Program (NCP)

Receive the XML response from a network server and process this response

The XML Portal also allows the user to record Thistle scripts from an XIP workspace
(from within the Graphical User Interface, or GUI, of the XIP). This method of gen-
erating XML affords the user a means of generating XML documents from within an
environment where the XML documents are viewed as graphical representations of the
XML, which is often easier to work with than a textual representation of XML, which
in this case takes the form of a Thistle script.

This manual serves to describe all of the functions of the XML Portal, and provides real
examples of using the XIP’s Thistle interface.

1.2 Introduction to XML Documents

The structure and layout of XML is beyond the scope of this document, and is not
required to be known by the user (this is the purpose of the XIP).

However, it is important that the user understands the fundamentals of XML in order to
make effective use of the XIP. This chapter will make use of a real XML document and
a corresponding Thistle representation of that document as a means of illustrating the
relationship between them.

XML has a hierarchical structure. This means data is stored in a manner where each
piece of that data is given a name, a value, and a place where that piece of data is stored
relative to the other data that is being stored.

I INTRODUCTION 3

Since XML has a hierarchical (or tree) structure the Thistle representation of an XML
document must also have a tree structure.

1.3 Example of an XML document

<?xml version="1.0" 2>

<CD>
<title>Obvious Tunes</title>
<serialNumber>987654321</serialNumber>

<artistDetails>
<artistID>JO_0001</artistID>
<artistURL>www.obviousjohn.com</artistURL>
<artistName>Johnny Obvious</artistName>
</artistDetails>

<track trackNum="1">The sun only shines at day</track>
<track trackNum="2">Rain 1is like water</track>
<track trackNum="3">West is left of East</track>

</CD>

1.3.1 XML Elements

Please refer to the example in section 1.3 on page 3.

Each of the sections of this XML document are given a name. These sections are known
as XML elements, or simply elements. Examples of elements in the above example are
<CD> and <artistDetails>.

1.3.2 XML Attributes

Please refer to the example in section 4.1.1 on page 6.

The XML specification allows an element to have sub elements of the same name. In
the above example, note that the CD has three tracks on it. For this reason the <t rack
. . .> element is repeated three times. The track number is described by an attribute of
the element called t rackNum.

2 USER GUIDE 4

2 User Guide

2.1 Thistle representation of the XML example

The Thistle representation of the example in section 4.1.1 on page 6 will first be listed,
and then explained.

document [0] .CD[0] .title.value := "Obvious Tunes";

document [0] .CD[1] .serialNumber.value := "987654321";

document [0] .CD[2] .artistDetails[0] .artistID.value := "JO_0001";
document [0] .CD[2] .artistDetails[1l].artistURL.value := "www. johnnyobviotl
document [0] .CD[2] .artistDetails[2].artistName.value := "Johnny Obvious'
document [0] .CD[3] .track.attributes.trackNum := "1";

document [0] .CD[3] .track.value := "The sun only shines at day";
document [0] .CD[4] .track.attributes.trackNum := "2";

document [0] .CD[4] .track.value := "Rain is like water";

document [0] .CD[5] .track.attributes.trackNum := "3";

document [0] .CD[5] .track.value := "West is left of East";

The Thistle code above shows that there is an index associated with each element of the
XML structure. This means that the user specifies the position of each element within its
parent node. In XML it is often necessary to place sub-elements in the correct sequence
within an element. In XML this is known as the element sequence.

The term .value is a reserved word which is used to set the value of an element. The
term .attributes is also a reserved word, and is used to list the attributes of an
element. The attributes do not have . value appended onto them.

The above Thistle code will simply create an object in Thistle which represents the
XML document. Since this is only a Thistle object that is being created, the structure
will not be validated by the XML portal at this stage. The process of converting the
above Thistle object into an actual XML document will be explained later, in section
2.2.1 on page 5.

2.2 Using the XML Portal

This section will describe the process of converting Thistle code (and the resulting This-
tle objects) into real XML documents, as well as the reverse process of converting XML
documents into Thistle objects.

2 USER GUIDE 5

2.2.1 Creating XML documents from Thistle objects

The XIP method GetDocument is used to convert a Thistle object into an XML docu-
ment and results in a string representing the actual XML document in a buffer.

The invocation of this method to perform the conversion is:

GetDocument (my_thistle_object);

A brief example of the usage of this method follows. Note that the Thistle object that is
created here is a shortened version of the object described in section 2.1 on page 4.

xmlPortal := Portal.XML.Connect ();
myDocObject .document [0] .CD[0] .title.value := "Obvious Tunes";
xml_buffer := xmlPortal.GetDocument (myDocObject);

The result will be a buffer (string) that contains the following XML document

<?xml version="1.0" 2>
<CD>

<title>Obvious Tunes</title>
</CD>

2.2.2 Creating Thistle objects from XML documents

The process of converting an XML document into a Thistle object means taking a buffer
which contains an XML document, and creating a Thistle object from that buffer.

The invocation of this method to perform the conversion is:

GetTree (my_xml_document_string);

A brief example of the usage of this method follows. Note that the XML document used
here is a shortened form of the buffer listed in section 4.1.1 on page 6.

xmlPortal := Portal.XML.Connect ();
xml_string := ’<?xml version="1.0" ?><CD><title>Obvious Tunes</title><,
xml_object := xmlPortal.GetTree(xml_string);

The result will be a Thistle object which represents the XML document provided. It
can be viewed in the tree view in the Automated Test Environment and its values can be
changed.

3 REFERENCE 6
3 Reference

3.1 Thistle XIP methods

During the invocation of any of the Thistle XIP methods, if any errors are present, these
errors are printed to the output pane in the Automated Test Environment.

3.1.1 GetDocument

The GetDocument method takes a Thistle structure and converts it to an XML document
buffer. During conversion the XML document is validated, and if it is not successful,
the GetDocument method will fail.

Usage: GetDocument (thistle_structure);
Returns: An XML document buffer as a string if successful, or an empty
string if unsuccessful

3.1.2 GetTree

The Get Tree method takes an XML Document and converts it to a Thistle tree struc-
ture. During conversion the XML document is validated, and if it is not successful, the
Get Tree method will fail.

Usage: GetTree (XML_document_string);
Returns: A Thistle tree if successful, or nil if unsuccessful

4 Appendix

4.1 Examples
4.1.1 A full Thistle script

The following example is taken directly from recording a script in the Automated Test
Environment using the XML Portal.

Note that although the Thistle code here uses with statements to define the object, the
code is the same as the example in section 2.1 on page 4.

Package XMLUsecase;

{ preamble }

4 APPENDIX

created by ’'Tester’;

description ’Sample Description’;
date 2008-01-08T14:24:42;

target ’'Eresia XML Portal’;

interface Portal.XML : CodeMagus.XML;

begin

xml := Portal.XML.Connect ();
with myThistleXmlObject do begin
with ["document"][0] do begin
with CD[0] do begin
title.value := "Obvious Tunes";
end
with CD[1] do begin
serialNumber.value := "987654321";
end
with CD[2] do begin
with artistDetails[0] do begin

artistID.value := "JO_001";

end

with artistDetails[1l] do begin
artistURL.value := "www.obviousjohn.com";

end

with artistDetails[2] do begin
artistName.value := "Johnny Obvious";

end

end
with CD[3] do begin
with track do begin
with attributes do begin
trackNum := "1";
end
end
track.value := "The sun only shines at day";
end
with CD[4] do begin
with track do begin
with attributes do begin
trackNum := "2";

4 APPENDIX

end
end
track.value := "Rain is like water";
end
with CD[5] do begin
with track do begin
with attributes do begin

trackNum := "3
end
end
track.value := "West is left of East";
end
end

end
xml_buffer := xml.GetDocument (myThistleXmlObject) ;

end.

	1 Introduction
	1.1 Overview of the XIP
	1.2 Introduction to XML Documents
	1.3 Example of an XML document
	1.3.1 XML Elements
	1.3.2 XML Attributes

	2 User Guide
	2.1 Thistle representation of the XML example
	2.2 Using the XML Portal
	2.2.1 Creating XML documents from Thistle objects
	2.2.2 Creating Thistle objects from XML documents

	3 Reference
	3.1 Thistle XIP methods
	3.1.1 GetDocument
	3.1.2 GetTree

	4 Appendix
	4.1 Examples
	4.1.1 A full Thistle script

