9 CODE MAGUS

Test Work Bench Toolset Reference Version 1

CMLO00032-01

Code Magus Limited (England reg. no. 4024745)
Number 6, 69 Woodstock Road
Oxford, OX2 6EY, United Kingdom
www.codemagus .com
Copyright (©) 2014 by Code Magus Limited
All rights reserved

Partner

Business ’ > August 16, 2016

CONTENTS CONTENTS
Contents
1 Introduction 2
2 Log file structure 4
3 Plan files 8
3.1 Planfileformat 0L 9
4 Programs 16
4.1 twbarep—Reporton activitiesinalogfile 16
4.2 twbbview—Viewer a session being proxied L. 18
4.3 twbcloses—Insert missing closes intoalogfile 18
44 twbcounts—~Count log file session activity 18
4.5 twbdrive—Replaylogfiles 20
4.6 twbgrep—Searchalogfile 37
47 twblogon—Locate log file logon activity 37
4.8 twbplan—Buildalog file fromaplan 37
49 twbprint—Printalogfile Lo 38
4.10 twbproxy—Proxy and logcircuits©. 38
4.11 twbprt3270—~Print a log file of 3270 data streams 45
4.12 twbrrep—~Create replay report from logfiles 45
4.13 twbsplit—Splitalog fileonapivotrecord 45
4.14 twbstrip—Strip sessions outofalogfile 46
4.15 twbvi3270—View log file containing 3270 data streams 46
4.16 twbrep3270—Report on 3270 activities in a session 46
4.17 twblnav—Navigatelogfiles 46
S Examples 56
6 Extensions 56

Code Magus Limited 1

CML00032-01

LIST OF FIGURES 1 INTRODUCTION

List of Figures
1 Network configuration withoutaproxy 3
2 Network configuration with proxyinplace 3
3 Network configuration with replay driver and proxy in place 4

1 Introduction

The twb toolset comprises a collection of program. The main program, t woproxy is a
proxy program which operates at the TCP circuit level and behaves much like any proxy
program. The purpose of the this program is not so much to behave as a proxy, but to
produce a log file of all circuit traffic. The purpose of recording this traffic is primarily
for testing and diagnostics. This testing or diagnosis could either be of the protocol and
data being traced for debugging purposes, or it could be for purposes of replaying the
data back as part of a test system driving some system under test. This redriving of the
data is achieved by the program twhdrive.

A single instance of the proxy program t woproxy can, for all practical purposes proxy
an arbitrary number of sessions. The originators of these sessions can be from anywhere
on the network, and the destination of these sessions can be directed to any machine.
Since a single instance of the proxy creates a single sequential log file, the proxy se-
rialises all the sessions being proxied. Thus, for purposes of replay, it is possible to
redrive session messages in the same order as they were observed by the proxy. This is
also useful for diagnostics.

The replay program t wbdrive mimics the sessions seen by the proxy program. This
mimicry can be perturbed by changing the pace at which messages are replayed. This
allows the toolset to perform stress testing of the system under test. Stress testing is
possible either by ensuring the same serialisation of the circuits and their messages (by
running a single copy of the twbdrive program) or by driving each session and its
messages independently (by running a separate copy of the twbdrive program for
each session in the log file).

When sessions are replayed, it is usual for the replay to drive the sessions back through
the proxy program. This has the advantage of building a log file of the sessions as they
being replayed. This file is useful in comparing the captured and playback sessions.

The most important program in the toolset is the proxy program twbproxy. This
program creates original log files captured from TCP sessions. It is debatable whether
twbdrive is the second most important program in the suite, but this is certainly the
case if the tools are being used for replay style testing. The rest of the programs in the
toolset are programs that are used to inspect and manipulate log files.

Figure 1 shows represents a network in which the three clients (white filled circles)

Code Magus Limited 2 CML00032-01

1 INTRODUCTION

require services from the two application servers (lack filled circles). Originating from
each of the clients are two circuits.

Figure 1: Network configuration without a proxy

In order to place a proxy between the clients and their application servers (for purposes
of recording), the clients have to be reconfigured so that the IP addresses they have for
the application servers are replaced by the IP address of the proxy server (the proxy
server is the host which runs twbproxy and may be one of the existing clients or
servers). This new arrangement is shown in Figure 2. The proxy in turn is configured to
recognise connections on the ports the clients use and to forward these to connections
to the application servers (the ports on the proxy server and the application servers need
not be the same). It is the responsibility of the proxy to match the resultant circuits and
to forward data between the clients and the application servers. As part of this process,
the proxy writes all data to a log file if one is open (if a log file is not open, the proxy

still forwards data).
O
A
Sy

Figure 2: Network configuration with proxy in place

For purposes of performing a replay, a driver server is introduced. This is shown in
Figure 3. The driver program twhbdrive which runs on the driver server, takes over

Code Magus Limited

(O8]

CML00032-01

2 LOG FILE STRUCTURE

responsibility of the clients and recreates the circuits as indicated in a log file previously
recorded by the proxy (or recorded by the proxy and edited into a replay log file). Data
messages in the log file that originated at the clients are replayed on the circuits to the
application servers. In the figure, this is done via another instance of the proxy so that
a new log file can be recorded. Both the replayed messages and the responses from the
clients are passed to a state machine. The particular state machine is nominated for that
class of circuit by the configuration of the driver program twbdrive.

O

Figure 3: Network configuration with replay driver and proxy in place

The distinction between clients and servers in the above example, has no bearing on the
toolset. What is important (for configuration purposes), is the originator of the circuits.
For example, the a server (in the figure) may connect to the client and it is possible
to replay such circuits as well. A warning though, the type of open from the ‘client’
(passive or active) dictates which directions will be labelled i nbound and outbound.
This means that when one views the log file in which a server initiated an active open,
data messages going fo the server will be labelled outbound data.

2 Log file structure

The toolset can be seen as a collection of programs that create and manipulate log files.
The description of a session is derived from the proxy class defined to the twbproxy
program instance that created the session. The session can be viewed as an object in-
stance of the sort described by the proxy class or element. Because the twbproxy
program offers a command shell which can be used to change the attributes of a proxy
class a any time during the execution of the proxy program, it is feasible that some
changes can result in an inconsistent state of the sessions. The attributes that can result
in an inconsistent state are hence copied over to the session when the session is cre-
ated. An example of such an attribute is the method of identifying the session’s record
boundaries.

Code Magus Limited 4 CML00032-01

2 LOG FILE STRUCTURE

Apart of the obvious attributes such as record length, type and data direction, a number
of the session attributes are also copied to a log record header and are repeated for every
record of the session in the log file.

A number of programs create log files. Programs that ‘modify’ log files do so by cre-
ating a new log file derived from the original log file. Examples of such programs are
twbsplit which ‘splits’ a given log file using a record sequence number as a pivot
record, and twbst rip which creates a log file from a session or sessions stripped from
an input log file. It is not the preserve of programs in the toolset to manipulate log files
and there is a header file twblog.h which contains prototype for functions in the file
twblog.o which can be used to read and write log files. These functions are used by
the tools themselves and are designed so that the toolset cannot overwrite an existing
log file.

The structure 1ogdata_t describes the log record header and has the following format:

typedef struct loghdr loghdr_t; /* log file record header structure -

struct loghdr
{

int logflen; /* length of following logged data =/
int logplen; /+ length of previous logged data =/
int logseq; /* sequence number */

time_t logtime; /+ time record was logged x/

struct timeval logtod; /+ time of day record was logged =*/
int logsid; /* session id =/

int logmode; /* session mode =/

int logtype; /* record type */

int logdir; /+ data direction =/

struct sockaddr_in logsrc; /* source address */

struct sockaddr_in logdst; /+ destination address x/

int logrecft; /+ record format =/

int loglfmt; /* record length format =/

int logloff; /+ record length offset */

}i

The header file t wb1og. h also contains prototypes for functions defined in printbuf .o

which can be used to format log file headers and data in a standard format:

Seg=6, Mon Jul 24 10:02:14 2000: Session=0, inbound data, length=18
src=10.62.129.60:1474, dst=192.168.207.1:23, tod=1004305335.76]1

o0..__.._05..__ .. 10..__..__15..__ .._20..__..__25..__.

0000: FFFA180049424D2D333237382D322D45FFF0
0000: I.B.M(-.3.2.7.8.-.2.-.E....0

Not the entire log record header is formatted, but all important fields for diagnostics
are printed. The Seq item is the log records position in the log file (not within the

Code Magus Limited 5 CML00032-01

.__30.

2 LOG FILE STRUCTURE

session) and starts at zero. The date and time formatted is the date and time that the
record was written to the log file. The Session number identifies the TCP/IP circuit
that the data belongs to. Session numbers are assigned serially from zero as sessions
are created. The indication of whether the data on the circuit was inbound data (i.e.
from the host that created the circuit using an active open—connect—to the host that
made the passive open—1isten) or outbound data (i.e. from the passive open
host to the active open host). The destination and source IP addresses and port numbers,
src=10.62.129.60:1474,dst=192.168.207.1:23, indicate the originating
host and port number for this message and destination host and port number for this
message. Messages for outbound data have these IP address and port number pairs
exchanged. The 1ength field indicates the number of bytes in the payload.

The data is printed in a dump format with each line containing up to thirty two bytes.
Each byte is printed as two hexadecimal digits. On the line below this hex dump, each
byte that is represented as a ASCII character is printed below the first hex digit and each
byte that is represented by an EBCDIC character is printed below the second hex digit.
If the byte is not represented by an ASCII or EBCDIC character then a period is printed
in the corresponding position.

See the header file twblog.h for details of these functions. The program twbprint
reproduced here, is an example of a small program which demonstrates the use of some
of these functions.

#include "copynote.h"

/ %

>*

Program twbprint.c formats log file formatted accroding to the
formats and APIs defined in twblog.h.

* %

*

Author: Stephen Donaldson.

*/

/ %

* S$Author: stephen $

* S$Date: 2010/02/16 15:38:17 $

* $Id: twbprint.c,v 1.6 2010/02/16 15:38:17 stephen Exp $
* SName: §$

*+ S$Revision: 1.6 $

* $State: Exp $

*

* S$Log: twbprint.c,v $

*+ Revision 1.6 2010/02/16 15:38:17 stephen

* Change printing of large numerics to unsigned

*

* Revision 1.5 2007/12/28 11:39:36 stephen

+ Add support for active open on original circuit
*

* Revision 1.4 2000/09/07 13:40:47 cvs

* Docs plus SA chnages july/aug

*

Code Magus Limited 6 CML00032-01

2 LOG FILE STRUCTURE

Revision 1.3 2000/06/23 14:34:51 cvs
changes and additions for screen comp

Revision 1.2 2000/06/19 20:47:41 cvs
Activity report, env var and log usage

ok ok X X X %

static char *cvs =
"$Id: twbprint.c,v 1.6 2010/02/16 15:38:17 stephen Exp $";

/%
* Large file support required for various. environments:

*/

#define _LARGEFILE_SOURCE
#define _LARGEFILE64_SOURCE

#define _LARGE_FILES
#define _FILE_OFFSET_BITS 64

#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>

/%

+ Constants and options:

x/
#define MAXSESSIONS 200000 /* max sessions can select on */
#include "twblog.h" /+ log file formats =/
#include "translate.h" /+* ASCII/EBCDIC translation tables =/
#define SET_MAX_ ORD MAXSESSIONS
#include "setops.h" /* set operations =*/

int main (int argc, char =*argv([])

{

LOG logfile; /* file to be formatted */
loghdr_t loghdr; /+ log file record header =*/
unsigned char buffer [BUFSZ]; /+ log record data =*/

set_t sessions; /* sessions selected */

int i, 73;

COPYNOTE;

if (argc < 2)
{

printf ("Usage: %s <log file name> [<session> ...]\n",argv[0]);
exit (1) ;

Code Magus Limited 7 CML00032-01

3 PLAN FILES

}

if (argc == 2)
set_universal (sessions);
else

{
set_empty (sessions);
for (j = 2; J < argc; Jj++)
if (sscanf (argv([j],"%d",&i) !'= 1 || 1 < 0 || 1 >= MAXSESSIONS)
fprintf (stderr, "Error %s should be integer in [0..%d]\n",
argv[j],MAXSESSIONS-1) ;
else
set_add(sessions, i);

}

if (log_open(&logfile,argv([1l],LOG_INPUT) < 0)
{
fprintf (stderr, "%$s\n", log_error (&logfile));
exit (1);
}

while (log_read(&logfile, &loghdr,buffer,0) >= 0)
{
if (loghdr.logsid >= MAXSESSIONS || loghdr.logsid < O
| | set_ismember (sessions,loghdr.logsid))
printbuf (stdout, loghdr, buffer);

} /* while %/

fprintf (stderr, "$s\n",log _error (&logfile));
log_close(&logfile);

exit(0);

}

3 Plan files

Plan files describe how a log file should be put together from the contents of other
log files. Plan files are ASCII text and contain statements according to a specific syntax.
These files can be hand-coded, but are also generated from some of the tools themselves.

The advantage of the plan files is that they can be edited without copying the files. For
example, a plan file proposed for a replay can be created using the twbarep program.
Before the replay, it may be necessary to omit certain activities or sessions from the
replay log. Instead of providing a tool for navigating and editing the log file, a simple
text editor can be used to edit the plan file. This means that the plan can be prepared on
a system different from which the software is installed or available. Plan files are also a
lot more portable than the log files they describe and can easily be ftp’ed or e-mailed.

Code Magus Limited 8 CML00032-01

3.1 Plan file format 3 PLAN FILES

The program twbplan processes the plan file and creates a new log file from a set of
input log files. The names of these files are contained in the plan file.

3.1 Plan file format

Plan files are ASCII files and describe the required log file in a free-format syntax.
White space and newline characters are ignored except in comments. The comments in
plan files are indicated using a leading hash character (#) and continue up to the end
of the line containing the hash. Comments may be interspersed among the statements
describing the log file plan. Programs such as t wbarep generate comments in the plan
file describing the activities associated with the included log file records.

The significant portion of the plan file is the free format statements that describe a log
file to be created from a set of input log files and the records from these log files which
should be included or excluded from the resultant file. Each of these statements is
terminated with a period.

Plan

CreateStmt |~ OptQualifyStmts ——

CreateStmt

—— create @» OptLogName »@—» from @» LoglList »@—»@—»

The first statement in the plan file must be the create statement. The OptLogName in
parenthesis following the create keyword is the name of the log file that twbplan
will create when the plan file is processed. This log file name is optional in the plan file,
but is mandatory when the plan file is processed twbplan. The log files named in the
from clause will be processed in the given order by the twbplan program to create
the new log file.

OptLogName

1 String J

LoglList

ﬁ LogName J -
LogName @» LogList

Code Magus Limited 9 CML00032-01

3.1 Plan file format 3 PLAN FILES

LogName

— string —

OptQualifyStmts

1 OptQualifyStmts +~ QualifyStmt j

QualifyStmt

ﬁ include -~ QualifyClauses
exclude ~ QualifyClauses
The create statement is optionally followed by a number of qualifying statements that
modify the selection of records from the input log files to be included in the output log
file. By default, that is without any qualifying statements, all the records of each of the

input log files are copied to the output log file. Any number of qualification statements
of any type can be specified.

The include statement is a means of overriding the default of including all log records
in the output file and restricts the selection to those records that satisfy the statement.

The exclude statements can be used to prevent certain records from being included in
the output log file.

All the clauses on the include and exclude statements are optional and for the
clauses whose values are used to select records to be included or excluded from the log
file being created, default values are supplied.

The clauses session, fromand to specify record inclusion or exclusion. The default
values for these clauses is to include all records when used in the include statement
or to exclude all records when used in the exclude statement.

The optional clauses name, pos and notes are not used by the program twbplan
to create the requested log file. The name clause simply provides a name to which the
record range can be associated. The notes clause is used to provide documentation
suitable for identifying the the records when the plan file is edited. The pos clause
is used for positioning the log file at the first record in the range to be included or
excluded. This field is used by programs which might want to navigate the log file
(examples include twbrep3270 and twblnav).

QualifyClauses

— OptName [~ OptSession —~ OptFrom —~ OptTo |~ OptPos (~ OptNotes —

Code Magus Limited 10 CML00032-01

3.1 Plan file format 3 PLAN FILES

OptName

\. name @» String @J
OptSession

session @» Number @J
from @» Number @J

10 |~ ()| Number @j |
g

(J

OptFrom

H

OptTo

H

OptPos

(J

pos »@—» Integer

notes »@—» StringList @—j
String j -
String —~ StringList

Both include and exclude statements take optional clauses which indicate the
range of log records over which the qualifiers operate. By default, without specify-
ing any qualifying clauses, the exclude and include statements operate over all
sessions and all records in the log file. Thus, for example, a single exclude state-

OptNotes

KJ

StringList

B

Code Magus Limited 11 CML00032-01

3.1 Plan file format 3 PLAN FILES

ment without any qualifying clauses produces an empty log file. On the other hand a
single include statement without any qualifying clauses includes all log file records
in the input log files in the new log file created. This latter case behaviour is the same
behaviour achieved when no include or exclude statements are coded.

The session clause restricts the scope of the include or exclude statement to
a particular session. Without any additional clauses the scope of the include or
exclude statement is restricted to the entire indicated session. Independent of any
qualification using the session clause, the first qualifying log record can be changed
using the from clause. Similarly, the last qualifying log record can be changed using
the to clause. By default the first log record encountered is the first qualifying record
and the last log record encountered is the last log record encountered.

Environment variables can be substituted for each of the terminals number or st ring.

The following example shows the plan file /tmp/sample.plan created by the pro-
gram twbarep using the command:

$ twbarep --plan Logs/monday_2_capture_testers.00000000

Code Magus Limited 12 CML00032-01

payry snsejy apo)

el

10-C€000TIND

#

Log name (s) :

0. Logs/monday_2_capture_testers.00000000

#

create ($CREATE_LOG +) from(Logs/monday_2_capture_testers.00000000)

#

include name ("LOGON") session(0) from(0) to(25) pos(0)

notes ("LOGON:\n"

"Start=0, end=25, end by=ACTIVITY ENDED\n"
"Sess=0, src=10.20.1.16:2648, dst=192.168.207.1:23\n"
"Start time=Tue Apr 17 07:31:59 2001")

#

include name ("0173A") session(0) from(26) to(45) pos(3265)

#

notes ("0173A:COTSTO01l :Correct a rejected merchant deposit.\n"
"Start=26, end=45, end by=ACTIVITY ENDED\n"
"Sess=0, src=10.20.1.16:2648, dst=192.168.207.1:23\n"
"Start time=Tue Apr 17 07:41:14 2001")

include name ("0272A") session(0) from(46) to(75) pos(10718)

#

notes ("0272A:CO0TSTO01l :Set up a new account within a new hierarchical structure.\n"
"Start=46, end=75, end by=ACTIVITY ENDED\n"
"Sess=0, src=10.20.1.16:2648, dst=192.168.207.1:23\n"
"Start time=Tue Apr 17 07:42:27 2001")

include name ("0173A") session(0) from(76) to(91) pos(33889)

notes ("0173A:COTSTO01 :Correct a rejected merchant deposit.\n"
"Start=76, end=91, end by=ACTIVITY ENDED\n"
"Sess=0, src=10.20.1.16:2648, dst=192.168.207.1:23\n"
"Start time=Tue Apr 17 07:51:47 2001")

I'¢

1ewIo] 9[Y ue[d

SHIANVId ¢

3 PLAN FILES

Plan file format

3.1

WUNEZ: T L0Z 89T Z6T=3SP “‘TI99C:9T T 0Z°0T=°0Is ‘I=sSsag,
WUNTHIANT ALIAILOV=AQ pus ‘poc=pus ‘1Zz=33e1S,
:G/.@HDMOSHM@ TedTydSJIeI=sTy MU & UTU3ITM 3UNOODOE MU ® dn BESTON WPONHHZ:&NPNO:vmwMOG
(8Tz60T)sod (F0g) 03 (TZZ)woxF (T)UOTSSSS (,¥YZLZ0u)SWRU SpNTOUT
#
(uwT00Z 9%:82:80 LT Zdy snl=2wI3 3Ie1S,
WUNEZ: T L0Z 89T Z6T=3SP “‘T199C:9T T 0Z 0T=°0Is ‘I=ssag,
WUNTHIANT ALIAILOV=AQ pus ‘QzZ=pus ‘gLT=33B1S,
:G/.@HHAMOSH\.«W TedTydSJIeIJ=sTy MU & UTU3ITM J3UNOODOE MU ® dn BESTON WPON._H._”Z:&NPNO:Vm@MOG
(€109L)sod (0ZZ)03 (6LT)WOIF (T)UOTISSSS (,VZLZ0u)DWEU SpNIOouT
#
(wT00Z 8G6:97:80 LT 2dy enl=2wI3l 3Ie1S,
WUNEZ T L0Z 89T °C6T=3SP “‘T199C:9T T 0Z 0T=20as ‘I=ssag,
WU\NTHANE ALIAILOV=AQ pus ‘g/T=pus ‘£9T=33e1S,
..G/.MH@OQ@U qjueyoSIsu U@uow.ﬁ@H ']102IJ0)D: WPQN._”._”ZHAQ‘MP._HO_L@@MOG
(G990L)sod (84LT)O3} (£9T)wWOAJ (T)UOTISSSS (,VELTOu)DWRU SPNIOUT
#
(uT00Z 90:92:80. LT IdV¥ SnI=2WT3 3Ie3S,
WUNEZ:T L0Z°89T C6T=3SP “‘I99Z:9T°T1°0Z 0I=0as ‘T=ssag,
WU\JIANT AIIATIOV=AQ pus ‘z9l=pus ‘0=33e1S,
WU\ :NODOT.) S230U
(0)sod (z9T)©o3 (0)woxF (T)uorssas (,NODOT,)SdWeu SpPNTOUT
#
(uT00Z 2€2:2G:L0 LT Xd¥ SnI=LWTl 3Ie3S,
WUNEZ:IT L0Z 89T Z6T=3SP “‘8F9Z:9T T 0¢ QI=0IS ‘(Q=Ssog,
WU\NANAZZ=AQ pUs ‘GZI=Ppus ‘Z6=23Ie3S,
:G/.@HSUUSMM@ TedTydDJIeJoTy MU & UTUITM JUNOODOE MU ® dn 192G . ._HonHOU"@NPNo:vm@MOG
(ccz6g)sod (62T)03 (Zh)WOIF (Q)UOTSSSS (,YZLZ0u)DWRU SPNTOUT
#

CML00032-01

14

ted

1mi

Code Magus L

3 PLAN FILES

Plan file format

3.1

(uT00Z 87:G60:60 LT ady onr=swI3 3Ie3S,
WUNEZ:T L0Z°89T C6T=3SP ‘199Z:9T°T1°0Z 0I=0as ‘T=ssag,
WUNQHANT XLIAILOV=AQ pus ‘Tzg=pus ‘QTc=31e3S,

WU\ "3Tsodep jueydisw ps3j3dalar © 939790+ FLOZTIN:YFLIOW) S@30U

(77G9LT)sod (T1zg)o3 (0TE€)woII (T)UOTSSSS (,VFLT0.)SWeU SpnIouT

(uT00Z 8G:GF:80 LT IdY SnI=sSwT3 23IEIS,

#

CML00032-01

15

imited

Code Magus L

4 PROGRAMS

4 Programs

Each of the programs attempts to give assistance of its usage. For example, those that
support a command shell implement a help command, and those programs that are
driven via command line arguments include a usage option (which is also invoked if a
command line error is detected) and those programs developed more recently include a
command line help option which gives an expanded description of the command line ar-
guments. In time, the earlier programs will be changed to include the same help options.
The popt package (ftp://ftp.redhat.com/pub/redhat/code/popt) is
used for this command line processing.

4.1 twbarep—Report on activities in a log file

Program twbarep reports on all activities found in a log file. The reported list of
activities can optionally be placed in a file in a format suitable processing by twbplan
to create a log file of the selected activities. The names of the last activities found on
each session can also be placed in such a file.

Usage:
$ twbarep [-p?] [-f {stdout|<file>}] [-t {0|<count>}] [--usage] <log fi

Long forms of the options are supported and the program offers the following brief help
if the options ——help or -2 is used:

Usage: twbarep <log file>

-p, ——plan Produce a plan suitable for twbaplan

-f, ——file={stdout|<file>} File name for report or plan

~t, ——-tail={0]|<count>} Restrict report and plan to last entries
sessions

Help options
-?, ——help Show this help message
——usage Display brief usage message

Following is an example of an activity report for a log file created from the plan file in
shown in Section 3.1:

$ CREATE_LOG=/tmp/sample_log.00000000 twbplan /tmp/day2c_capture_replay
$ twbarep /tmp/sample_log.00000000

Code Magus Limited 16 CML00032-01

L1 payry snsejy apo)

10-C€000TIND

/tmp/sample_1og.00000000
dest ip and port

Log name (s) :
sid

192.168.207.1:23

10.59.31.
0
522
528
1646
2228
2720
2776
2853
2887

10.59.31.
0
568
626
889
1046
1330
3071
3336

16

80:1617
521
527
753

1833

2255

2774

2779

2886

2890

80:1619
567
625
887

1045

1327

1523

3226

3341

source IP and port

initial
COTST13
COTST13
COTST13
COTST13
COTST13
COTST13
COTST13
COTST13

initial
COTSTO8
COTSTO8
COTSTO8
COTSTO8
COTSTO8
COTSTO8
COTSTO8

sequence
START
3041V
2838V
1099V
1074v
1924
1640V

192.168.207.1:23

sequence
START

Set up
Set up
Set
Set

5825M
5826M
5829M
5830M
5837M

Set up an application for a single cardholder.

Set up a classic business detail account.

Inquire on a purchase transaction.

Change the automatic payment option on an account.
*% NO ACTIVITY DESC *x*

Close a plastic on an account

O Y Y W

max seq bytes in bytes ouf

3341 8445 146297
business control debit card account.
business detail debit card account.
classic business control account.
classic business detail account.
classic business detail account.

12265 216957

CTIVITY
ECTIVITY
BCTIVITY
BCTIVITY
ECTIVITY
ECTIVITY
ECTIVITY
ECTIVITY
guto—end

[a—

2

ECTIVITY
RCTIVITY
ACTIVITY
ACTIVITY
ACTIVITY
ACTIVITY

ACTIVITY

e

4.2 twbbview—Viewer a session being proxied 4 PROGRAMS

4.2 twbbview—Viewer a session being proxied

Program twbbview formats a log file record fed from a port. An example of such a
feeding program is the proxy program through the viewer port.

4.3 twbcloses—Insert missing closes into a log file

Program twbcloses reads alog file and writes a new log file out. For sessions missing
a close record, one is generated after the last record for the session so that if the log file
18 used for a redrive, then resources can be reused once sessions become inactive.

In order to insert these closes at the correct places, the entire log file sets must be pro-
cessed in two passes. The first pass notes the last activity for each session and whether
a close record is missing from the log and the second pass writes a new log file set
inserting the close records at appropriate points.

4.4 twbcounts—Count log file session activity

Program twbcount s counts analyses message traffic in a log file by session.
Usage:
$ twbcounts <log file name>

The report below was created from the log file created using the example plan file from
Section 4.1 using the command:

$ twbcounts /tmp/sample_log.00000000

Code Magus Limited 18 CML00032-01

61 payry snsejy apo)

10-C€000TIND

sid source IP and port dest ip and port max seq bytes in bytes ouf
15 10.59.31.80:1617 192.168.207.1:23 2890 3820 7065
16 10.59.31.80:1619 192.168.207.1:23 3341 8445 146297

12265 216953

/tmp/sample_log.00000000

V

S

= 76
S

ot 125
[0))

<(|;) ____________
C 201
c

u

AJ1AD)OR UOISSAs Y 30[)

SINVYDOdd ¥

4.5 twbdrive—Replay log files 4 PROGRAMS

4.5 twbdrive—Replay log files

This program processes files created by the t wbproxy program. and redrives the net-
work sessions according to user parameters indicated by commands.

Usage:
S twbdrive [<command> ...]

Each of the arguments entered on the command line of program twbdrive is inter-
preted as a full command. If the commands contain spaces, then they should be quoted
to prevent the shell from splitting the command across multiple arguments.

Once twbdrive has been started it provides a shell from which additional commands
can be entered. The prompt for this shell is drive>. «The same command syntax
supported on the command line is supported by the shell. Furthermore, commands can
also be sourced from files using the same syntax. This scripting can be very useful as
configurations are often re-used.

There has to be a mechanism to re-establish the circuits for the sessions in the log file
that are to participate in the replay. The creation of such sessions is triggered by the
occurrence of connect records in the log file. Whether or not these circuits are re-
enacted and how they are re-driven is determined by the configuration of twbdrive.
Instead of insisting on an explicit configuration for each session found in the log file,
only classes of configuration are necessary. This is facilitated by the TCP/IP protocol
and the nature of most Internet applications. For example, all telnet sessions typically
connect to the telnet server on port 23.

The commands provide the means for configuring twbdrive. There are commands
for creating replay elements. Each replay element describes a class of sessions. When
a replay element is successfully used to create a new circuit a new session element is
created to describe that circuit. Using the commands, replay elements can be given
certain attributes which describe how the circuit is established and how the state of
the circuit is to be maintained. Probably the most important attribute assigned to the
session is the state machine that controls the state of the session. Additional attributes
might be used by this state machine in determining how to maintain additional state
information. Another class of attributes is only used outside of the state machines by
the main processing loop of twbdrive. Included in the first class of these attributes
might be the state machine elected to control the session. The state machine, in turn,
might use the record length field to allocated additional internal buffers. It is potentially
catastrophic if such attributes would could be changed in an un-synchronised manner.
Consequently, such attributes are copied from the replay element to the session element
when the session is created. An example of an attribute used only by the main processing
loop and not for maintaining any session state within any session elements are the think-
time distribution and the think-time distribution parameters. These are quite safe to
change at any time (modulo any application timing implications) and are not copied

Code Magus Limited 20 CML00032-01

4.5 twbdrive—Replay log files 4 PROGRAMS

to the session element. Instead, whenever such attributes are required by the session
element, the current settings in the originating replay element is used.

Command

HelpCommand 7
ReplayCommand

C L

DisplayCommand

L

SwitchCommand

OpenCommand

l

CloseCommand

SourceCommand

C L

ResumeCommand

i

QuitCommand

AbortCommand

s

AlterCommand |

ExcludeCommand

N

IncludeCommand

:

SetCommand

fff[ffffffffff%

.

PassCommand

The above indicate the classes of command. Not that a blank line is a valid command
(which does nothing). Comment lines are also allowed and are indicated by a hash
(#) in the first position of the command line. Comments extend to the end of the line
containing the hash character.

The shell can also be used to start twbdrive direct from a script using the usual # !
signature:

#!/usr/local/bin/twbdrive

Code Magus Limited 21 CML00032-01

4.5 twbdrive—Replay log files 4 PROGRAMS

HelpCommand

help —

help — replay

help (—~ display

LT L

help —~ switch

help (~ open

l

help — close

help —~ source

C L

help -+ resume

help (—~ view

LT

help —~ quit

help —~ abort

-

help ‘ alter

help ~ exclude

L

help (~ include

:

help —~ set

ffffffffffffff#

.

help —~ pass

The first class of commands is the help command. The help command gives a brief
description of the syntax of the available commands. When used without a command
name, he 1p offers:

drive> help
Try: help {replay|display|switch|open]|close
| source|resume|view|quit|alter]|exclude
|include|set |pass}
Try: — <navigation command>
+ACK

And when, for example, asking for help on the replay command, help offers:

Code Magus Limited 22 CML00032-01

4.5 twbdrive—Replay log files 4 PROGRAMS

drive> help replay
Syntax: replay <name> {inbound]|outbound} <mhost>:<mport> <rhost

Where <rhost> ::= {<ipaddress>|<hostname>}
name — name of the replay element
mhost - match IP address of connection
mport — match port of IP connect
rhost - replay IP address of connection
rport — replay port of IP connect

inbound - the replay will be for inbound data
outbound- the replay will be for outbound data
+ACK

The string +ACK indicates that the program twbdrive considered that the user’s com-
mand was executed successfully. If any errors are detected whilst attempting to execute
a command the final response (before the command prompt drive> appears) is —ACK.
This feedback makes is possible for the driver program to be be driven by another pro-
gram.

ReplayCommand

— replay (—~ string —~ Direction D

C. Hostname ——@—» number

5

Q Hostname : number ——

The replay command creates a replay element describing a class of sessions to be
replayed. The default replay class is stateless. The replay class is given a name which
can be used in further commands to change its state and attributes.

As replays are created they are also given a number. The replay element is known both
by its name and its number. If the name given to the replay element is not unique, then
a unique name is generated. In this case, any further commands referencing the replay
element will have to use the number.

The Direction parameter indicates whether the i nbound or outbound data for the as-
sociated sessions will be replayed on the circuit. If inbound data is to be replayed, then
an active (connect) call is made when the log record is processed. When outbound
data is to be replayed, twbdrive will accept incoming connections provided the lis-
tener is opened (see the alter command). If a listener has not be opened and an
incoming connect has not been accepted by the time the connect log record for the ses-
sion is processed, the replay suspends until a listener has been opened for the session

Code Magus Limited 23 CML00032-01

4.5 twbdrive—Replay log files 4 PROGRAMS

and an connection has been accepted for the connection.

The first Hostname and number pair are the IP address or DNS name and port number to
match on connect records in the log file in order to create a session under this replay
class. This address matches the destination IP and port number made in the original
connection. This destination IP address and port number pair is 1ogdst field found in
the log record header.

The second Hostname and number pair are the IP address or DNS name and port number
to which the session must be replayed.

As sessions are created they are assigned a unique number. This number can be used in
further commands to manipulate the session.

Hostname

ﬁ ipaddress J -
Lookuplpaddress

Lookuplpaddress

— string —

Direction

T inbound T

outbound

The inbound direction indicates traffic flow from the active open (connect) to the
passive open (1isten).

DisplayCommand

display || replay |~ Replay

display (~ replay ({ all

display (—~ session —~ number

display (—~ session —~ all

Display commands are provided for displaying the state of replay elements and sessions.
Either all replay elements or sessions can be viewed using the display command:

drive> display replay tn3270

Code Magus Limited 24 CML00032-01

4.5 twbdrive—Replay log files 4 PROGRAMS

Replay: name = tn3270, number = 0, active =1

Match IP: 192.168.20.20. port: 23

Replay IP: 10.59.31.80. port: 3023

State machine = 3270, reclen = 8000, recfm = iaceor

Thinktime distr = constant, distr parms = [0, 0]
SwitchCommand

T SWilCh J >

switch —~ string

When specifying a log file from which to replay, only the base name is provided. Every
time a new base name is introduced the name is completed by appending “. 00000000”

to the end of the name. The switch command without a new name string, switches the
replay to the next numbered suffix. For example:

Now replaying from log /home/stephen/Logs/tuesday_test.00000000
Source command file ./stream—-a-driver closed.

drive> switch

Now replaying from log /home/stephen/Logs/tuesday_test.00000001
drive>

This causes the current log file from reply is being performed to be closed (if it is not
already closed and the next log file of the sequence to be opened for continuing the
replay. The switch command supplying a new base name string, closes the current log
file if one is open and opens the a new log file for replay using the given base name and
asuffix of “.00000000”.

OpenCommand

open —~ replay —~ Replay

open — replay (—~ all

“ .
open (—~ log —~ string

Inactive replays (i.e. those showing an indicator of active = 0 when displayed)
cannot create sessions and can be re-activated again using the open command:

Replay: name = tn3270, number = 0, active = 0

Match IP: 127.0.0.1. port: 23

Replay IP: 10.59.31.80. port: 3023

State machine = 3270, reclen = 8000, recfm = iaceor
Thinktime distr = constant, distr parms = [0, 0]

drive> open replay tn3270

Code Magus Limited 25 CML00032-01

4.5 twbdrive—Replay log files 4 PROGRAMS

drive> display replay tn3270

Replay: name = tn3270, number = 0, active =1

Match IP: 127.0.0.1. port: 23

Replay IP: 10.59.31.80. port: 3023

State machine = 3270, reclen = 8000, recfm = iaceor
Thinktime distr = constant, distr parms = [0, 0]

Replay classes can be inactivated using the close command. All inactive replays
classes can be re-activated using a1l keyword:

drive> open replay all

A new log file base name can also be supplied using the open command. This command
has the same meaning as the switch command when a new base name 1s provided.

CloseCommand

close (~ replay —~ Replay —
close —~ replay all—AAA—AAIJ

close |+ session |+ number

close |+ session all —

ffff%

close —~ log 4/

The close command can be used to set a particular replay class inactive by supplying
the number of the replay class in the command:

drive> display replay tn3270

Replay: name = tn3270, number = 0, active =1

Match IP: 127.0.0.1. port: 23

Replay IP: 10.59.31.80. port: 3023

State machine = 3270, reclen = 8000, recfm = iaceor
Thinktime distr = constant, distr parms = [0, 0]

drive> close replay tn3270
drive> display replay tn3270

Replay: name = tn3270, number = 0, active = 0

Match IP: 127.0.0.1. port: 23

Replay IP: 10.59.31.80. port: 3023

State machine = 3270, reclen = 8000, recfm = iaceor
Thinktime distr = constant, distr parms = [0, 0]

Code Magus Limited 26 CML00032-01

4.5 twbdrive—Replay log files 4 PROGRAMS

All replay classes can be inactivated using the al1 keyword. Inactivated replay classes
cannot be used to create sessions.

Sessions can be closed using the close session command. When a session is closed
using the close command the local socket file descriptor is closed. This permanently
disrupts the session and hence the session cannot be re-activated again. The session
can also be in-activated by the peer end of the circuit performing a close operation on
the socket. Locally twbdrive also closes the circuit when a close log record for the
circuit is found on the log file.

The final use for the close command is to close the log file which is currently being
used for replay.

SourceCommand

T Sourceﬁ
string

The source command can be used for ‘executing’ a script file containing additional
canned commands. If a single string entered at the command prompt or as a command
line argument to twhbdrive is not a reserved word, then it is assumed to be a script
name. This is the mechanism which, together with hash comment lines allows the com-
mand files to be executed as shell scripts. Command scripts may also include these two
forms of the source command. Source files can be stacked to a depth of twenty files.

ResumeCommand

—> resume ——

Under certain conditions, the replay enters a state of suspension in which the replay
is'inactive. This state exists to allow the controller (person operating the twbdrive
command prompt) to change the state of the system in a controlled manner. When
twbdriwve initially gains control, replay is suspended allowed the controller to define
any replay classes and to make appropriate adjustments. Once the controller is satisfied
with the configuration, the resume command (re-)starts the replaying of messages
from the currently open log file. An example of a condition which causes the replay to
be suspended is the encountering of the end of the current log file:

./stream-a-driver: open log $DRIVER_LOG

Now replaying from log /home/stephen/Logs/sample.00000000

Source command file ./stream—-a-driver closed.

drive> switch

Now replaying from log /home/stephen/Logs/sample.00000001

drive> resume

drive> End of log file /home/stephen/Logs/sample.00000001 encountered

Code Magus Limited 27 CML00032-01

4.5 twbdrive—Replay log files 4 PROGRAMS

Replay has been suspended allowing the controller to attend to the
condition.

Enter the quit command to end the replay or resume once the situation t
been

corrected.

QuitCommand

— quit ——

The quit command exits the driver. Caution should be used with this command as it
is carried out without confirming with the controller.

AbortCommand

— abort ——

The abort command is similar to the quit command. It causes the driver to exit
without confirmation. This command produces a core dump for diagnostic purposes.

AlterCommand

AlterCommandReclen

AlterCommandRecfm

AlterCommandMode

AlterCommandQueue

Mtw

AlterCommandSource

L

AlterCommandRecordld

AlterCommandState

(L

AlterCommandListen

L

AlterCommandThinktime

£ L L L Ffff#

L

AlterCommandTrigger

The replay command creates a replay class with default attributes. For example, the
following replay command

$ replay tn3270 inbound 127.0.0.1:23 10.59.31.80:3023

results in a replay class with the following attributes.

Code Magus Limited 28 CML00032-01

4.5 twbdrive—Replay log files 4 PROGRAMS

Replay: name = tn3270, number = 0, active =1
Match IP: 127.0.0.1. port: 23

Replay IP: 10.59.31.80. port: 3023

State machine = stateless, reclen = 32768, recfm =
Thinktime distr = constant, distr parms = [5000,0]

By default the replay class is active. However, any sessions created from this replay
class will not be associated with any state machine, will log data in a stream mode
without any message or record boundaries. The default think-time is 5000ms and which
will be drawn as a constant.

These attributes can be overridden using the alter command. The Thinktime distri-
bution and the parameters of the distribution can be changed at any time and will im-
mediately be applicable to all existing sessions that have been created under that class.
Changes to the other attributes will only be applicable to new sessions created under the
replay class.

AlterCommandReclen

— alter —~ replay (~ Replay]

Q reclen -~ number

The reclen parameter (default value 32768 bytes) is used to allocate a buffer for each
session created under the class. The session cannot process log records larger than this
buffer size. Also, any data received on the circuit during the replay, will split over more
than one buffer should the buffer fill during reception. If a record format is define, then
the number of bytes in a records cannot exceed the reclen value.

AlterCommandRecfm

—— alter —~ replay (~ Replay]

Q recfm —~ RecordFormat ——~

Code Magus Limited 29 CML00032-01

none

4.5 twbdrive—Replay log files 4 PROGRAMS

RecordFormat

:

none ﬁ—b
laceor I

N
N e ——
N

length I

N newline '

The recfm parameter indicates to the twhdrive process whether the stream operates
in a stream or record mode. The default (none) is a stream mode. In this mode, no
record identification is made. All the other modes are record modes. In this case the
mode indicates how records are identified.

A recfm of iaceor indicates that the end of the records in a stream can be identified
by the trailing TN3270 characters IAC (Oxff) and EOR (0xfe).

A recfm of etx indicates that the end of the records in a stream can be identified by
the trailing ASCII and EBCDIC ETX character (0x03).

A recfmof newline indicates that the end of the records in a stream can be identified
by the trailing ASCII line feed character (0x0d).

A recfm of 1ength indicates that the end of the records in a stream can be identified
by an embedded length field. Since such lengths can be arbitrary, a mechanism is sup-
plied for describing binary lengths. This specification of the length is described by the
offset, format and bias attributes.

Code Magus Limited 30 CML00032-01

4.5 twbdrive—Replay log files 4 PROGRAMS

AlterCommandRecordld

— alter ~ replay (~ Replay —) —

C offset —~ number I

N atter 1] replay (~ Replay

C format —~ LengthFormat

o atter | replay —~ Replay

@ku

Q bias —~ Integer I

LengthFormat
11234 |~
14321+
si2 |
s21 —
b1 |

When the rec fm attribute is set to 1length, twbdrive uses the value of the of fset
attribute to locate the embedded length field. The format attribute describes the binary
format of the embedded length. Four byte length formats are 11234 for big-endian and
14321 for little endian. Similarly, two byte formats are described by s12 and s21. A
single byte format is also available b1. To complete the computation of the expected
length, twbdrive needs to know the whether the length found in the record is biased.
For example, records with fixed headers often contain a length field which describe the
number of bytes that follow the header. In this case, the embedded length will need
to be biased in order to derive the expected number of bytes in the record. The bias
attribute supplies this bias value.

Code Magus Limited 31 CML00032-01

4.5 twbdrive—Replay log files 4 PROGRAMS

AlterCommandMode

— alter ~ replay (~ Replay —)

C mode ~ SessionMode —

SessionMode

ﬁ asyncf

sync

Whether sessions are synchronous or asynchronous is indicated using the mode param-
eter. Presently, this parameter is ignored.

AlterCommandQueue

— alter —~ replay (~ Replay D

Q queue —~ number

The queue parameter supplies the queue depth for socket listeners. The value of this
parameter is only used at the time of the 1isten socket call. See the description of
the AlterCommandListen command. A listener is only used when replaying outbound
data.

AlterCommandSource

— alter —~ replay (~ Replay]

C» source | hostname 4@—T numberj—~
ditto

In certain distributed applications, the passive open peer (11isten)recognises the active
open peer (connect) by the address to which the active opener has bound. The default
binding is to any local adaptor (INADDR_ANY) and a dynamically assigned port. In
order that a specific adaptor and port number be used, the replay class can be assigned
a source port to which the session should bind. If the keyword ditto is used instead
of a port number, then the actual port number used in the bind is taken from the source
socket address of the connection record for the session found in the log file.

Code Magus Limited 32 CML00032-01

4.5 twbdrive—Replay log files 4 PROGRAMS

This use of the source address only makes sense when twhbdrive performs the ac-
tive open (connect). If the replay class is defined as replaying outbound data
then twbdrive performs a passive (1isten) open for the session. In this case the
twbdrive end of the session is not created when the corresponding session connec-
tion log record is found, but rather when the listener is opened (also done viaan alter
command). This allows the session connection to succeed even if it is attempted before
the corresponding connect record has been processed.

As connections are accepted for open listeners, the unmatched sessions are queued until
the corresponding log record is processed. At this point the destination address from
the original session recorded in the log record header as 1ogdst is compared to the
replay class match IP address and port number. If they are the same then the session
linked to the circuit and replay processing continues. If the ditto keyword is used,
the matching has the extra condition that the source port (as seen by twbdrive) on the
replay circuit must also match the source port found in the log record header in the field
logsrc.sin_port.

AlterCommandState

— alter ~ replay (~ Replay —J

CA state ++ StateMachine —~

Nominating a state machine for the replay class allows the replay to proceed under an
additional protocol layer. The protocol state machine has the ability of delaying the
forwarding of messages until a certain state is reached or can prevent the forwarding of
certain messages. In the latter case, the replay continues by considering the next record
on the log file. The state machine also has the ability of altering the messages before the
message is replayed.

The state machine can also send the message to other destinations. For example, the
state machine has access to the triggered sessions associated to the session owning the
log record and can send data on those circuits.

StateMachine

stateless

basic3270

ext3270

legacy

Presently there are three state machines in addition to the default stateless processing

Code Magus Limited 33 CML00032-01

4.5 twbdrive—Replay log files 4 PROGRAMS

of the replay on the circuit. These state machines are embedded inside twbdrive, but
in the future they will be removed and loaded as shared objects as they are named and
associated with a replay class.

The basic3270 replay engine observes a minimal set of the 3270 data stream pro-
tocol. TN3270E is not supported. This state machine allows 3270 sessions to behave
in a manner that observes input inhibit. The code for this state machine is shown in
Section 6.

The ext 3270 replay engine observes the full 3270 data stream protocol. TN3270E is
not supported. The state machine maintains a shadow of the 3270 protocol entity being
replayed. This state is the state of the session as seen when the log records were cap-
tured. The shadow and replay screens are checked on outbound update for divergence
between the two sessions. An arbitrary list of regular expressions can be supplied which
to mask the data before comparing screen images.

The regular expressions are passed to the ext 3270 command function using the pass
command as illustrated in the following example:

pass exttn3270 "r/TRAN/[0-9]1[0-9]:[0-91[0-9]1:[0-9]1[0-9]1/"

On detected of divergence a message is printed inviting a specially designed 3270 ter-
minal emulator to take over the session in order that remediation can be performed. At
a suitable point in time, the emulator can disconnect to allow the replay to continue.

The 1egacy state machine 1s the proprietary Nedcor legacy MCS state machine.

AlterCommandListen

—! alter |+ replay |~ Replay || listen open 7—~
\A close

For replay classes used to replay out bound data, the replay IP address and port number
pair (the second pair specified in the replay command) is used to perform the passive
open (1isten). The listener associated with this replay class can be closed and opened
with this alter command.

When the replay command is issued, the passive open is not performed until the first
time it is opened using the alter command.

Code Magus Limited 34 CML00032-01

4.5 twbdrive—Replay log files 4 PROGRAMS

AlterCommandThinktime

— alter ~ replay (-~ Replay (~ thinktime —>

constant - number

uniform —~ number —~ number

normal —~ number —~ number

exponential —~ number

When replaying data on a circuit, each time a message is received from the peer, a ran-
dom number is drawn from the indicated parameterised distribution. This number is
interpreted as the number of milliseconds that have to elapse before a message from the
log can be sent to the peer by twbdrive. When multiple sessions are being replayed
concurrently, the actual delay before a message is resent along a session may be longer
than the drawn random number. This is because the order of processing records for-
warded by twbdrive from the log file have to be in the order recorded in the log file.
Delays can be caused by the state machines associated with the sessions. A common
case is when the peer of a session has a high response time and prevents the state ma-
chine from allowing additional data from the log file to be forwarded on that session.
This also means that data for other sessions after this record on the log file could also
be delayed.

The supported distributions of the thinkt ime and the meaning of the parameters are
listed in Table 1.

Distribution Think time parameters
constant In milliseconds

uniform Minimum and maximum
normal Mean and standard deviation
exponential | Mean

Table 1: Supported thinktime distributions and their parameters

AlterCommandTrigger

—— alter —~ replay (~ Replay)

Q trigger —~ Replay ——

Code Magus Limited 35 CML00032-01

4.5 twbdrive—Replay log files 4 PROGRAMS

ExcludeCommand

T exclude ~ log -+ session —~ number
exclude -~ log — session —~ all

IncludeCommand

ﬁ include -~ log (~ session —~ number
include (—~ log —~ session — all

SetCommand
number
Integer i
string

—{ pass (—~ replay (~ Replay -~ string ——

set |~ string

set |~ string

set (—~ string

QO

PassCommand

The pass command is used to pass a command to the command method of the replay
state machine object. Currently only the ext 3270 object supports the command in-

terface. The following examples illustrates the use of this interface where a
regular expression command is being passed to the replay tn3270:

masking

drive> replay tn3270 inbound stream-a:23 stream-b:2323

Replay: name = tn3270, number = 0, active =1
Match IP: 10.59.31.80. port: 23
Replay IP: 165.180.227.217. port: 2323
State machine = stateless, reclen = 32768, recfm =
Thinktime distr = constant, distr parms = [5000,0]
+ACK
drive> alter replay tn3270 state ext3270
Replay: name = tn3270, number = 0, active =1
Match IP: 10.59.31.80. port: 23
Replay IP: 165.180.227.217. port: 2323
State machine = x3270, reclen = 32768, recfm = none
Thinktime distr = constant, distr parms = [5000,0]

Code Magus Limited 36 CML00032-01

none

4.6 twbgrep—Search alog file 4 PROGRAMS

+ACK
drive> pass replay tn3270 "r/TRAN/DATE: [0-9][0-9]:[0-9][0-9]:[0-9][0-¢
+ACK

Replay

T number j—~
string

Integer

T numberT

integer

Environment variables can be substituted for each of the terminals integer, number
or string.

4.6 twbgrep—Search a log file

Program twbgrep makes a new log file from an existing log file but includes only the
records that match a given regular expression.

4.7 twblogon—Locate log file logon activity

Program twblogin filters a log file locating the connect records for the sessions in-
dicated on the command line. Each entry on the the command line is a pair, the first
entry of which is a character indicating the session type: ‘c’ for CICS sessions and ‘m’
for MCS sessions. The session type is used to tell when the end of the session login
has been detected. For the MCS type this detection is immediately, but for the CICS
sessions this is the first appearance of the EBCDIC string "DFHCE3549 Sign-on
is complete".

4.8 twbplan—Build a log file from a plan

Program twbplan creates a log file from given log file according to the spec contained
in a plan file. This plan file is read either as stdin or from a file named on the command
line.

Code Magus Limited 37 CML00032-01

4.9 twbprint—Print alog file 4 PROGRAMS

4.9 twbprint—Print a log file

Program twbprint formats log file formatted according to the formats and APIs de-
fined in twblog.h.

4.10 twbproxy—Proxy and log circuits

This program listens on a series of ports and for each incoming request it request estab-
lishes a connection to a another port. These two ports then make up a pair. Data arriving
on one port is written to the other port in the pair and is copied to a trace file.

During processing stdin is also monitored for commands which change the state and
report on the status of any sessions.

Command

N o
HelpCommand

N

ProxyCommand

N

DisplayCommand

SwitchCommand

OpenCommand

R

CloseCommand

SourceCommand

C L

ResumeCommand

ViewCommand

QuitCommand

L

AlterCommand

C L ¢ L0 L [

:

SetCommand

Code Magus Limited 38 CML00032-01

4.10 twbproxy—Proxy and log circuits

4 PROGRAMS

HelpCommand

~ help

help —

L

proxy

help

display

help

.

switch

help

open

help —

L

close

help —~

source

help

L

resume

help (-~

view

help —

quit

L L L L

help —~

P LT

alter

-

help

:

set

ProxyCommand

— proxy (~ string = Hostname »@—»

number

Q Hostname

L»@—» number ——

Hostname

ﬁ ipaddress J
Lookuplpaddress

Lookuplpaddress

— string —

Code Magus Limited 39

CML00032-01

4.10 twbproxy—Proxy and log circuits

4 PROGRAMS

DisplayCommand

display

proxy —~ Proxy

display

proxy — all

display

session — number

o

display

session — all

SwitchCommand

switch

B

switch

string j

OpenCommand

open —~ proxy (—~ Proxy

open (—~ proxy — all

open [~ log |~ string

CloseCommand

close |+ proxy |~ Proxy

close ~ proxy — all G

close -~ session -~ number L

close |+ session (~ all I

{ (f#

close —~ log %

SourceCommand

T SOW%E
string

ResumeCommand

— resume ——

Code Magus Limited 40

CML00032-01

4.10 twbproxy—Proxy and log circuits 4 PROGRAMS

QuitCommand

— quit ——

ViewCommand

—— view |~ proxy (=~ Proxy —~ Hostname »@—» number ——

Code Magus Limited 41 CML00032-01

4.10 twbproxy—Proxy and log circuits

4 PROGRAMS

AlterCommand

— alter (—~

proxy +—~ Proxy —)

4

reclen

>

number

N alter

proxy —~ Proxy D

4

recfm

>

RecordFormat

N alter

proxy (—~ Proxy D

4

mode

—

SessionMode

N alter

proxy +—~ Proxy —>

4

queue

>

number

\\{ alter H proxy —{ Proxy b

(

source (+~ Hostname »@—»

number

N alter —~

proxy (—~ Proxy —)

4

source (~ Hostname »@—»

ditto ——/

N alter

proxy (—~ Proxy —)

4

offset

number

Code Magus Limited

CML00032-01

4.10 twbproxy—Proxy and log circuits 4 PROGRAMS

o alter [proxy — Proxy)

Q format —~ LengthFormat J

N atter [proxy — Proxy D

C. bias (-~ Integer J
N atter [proxy —~ Proxy —)

Q pause (—~ ColatingSeq (—~ string H number |~ Direction |-/

! alter proxy t—~ Proxy —)

Q origin Origin /

ColatingSeq
ascii 7—»
ebcdic

inbound

Direction

outbound

iobound

Origin

j passi vej—~
active

Code Magus Limited 43 CML00032-01

4.10 twbproxy—Proxy and log circuits 4 PROGRAMS

SetCommand
set |~ string »@—» number
set |~ string @—» integer
set |~ string @» string

Proxy

B

numberj—~
string

RecordFormat

— | rone

laceor }—/

etx I

N
N
o length |—
N

newline '

SessionMode

asyncj—>
sync

LengthFormat

S

11234

B

14321

si12

s21

ffff#
LT

bl

Code Magus Limited 44 CML00032-01

4.11 twbprt3270—nPrint a log file of 3270 data streams 4 PROGRAMS

Integer

T number T

integer

Environment variables can be substituted for each of the terminals integer, number
or string.

The log file navigation library is also embedded in the twbdrive program. Log file
navigation commands can be entered in the driver program by prefixing the commands
with the “~”" character. See section 4.17 for details on the log file navigation commands.

4.11 twbprt3270—Print a log file of 3270 data streams

Program twbprt3270 uses sks3270 to format the screens of a given session or all
sessions if no session is indicated.

4.12 twbrrep—Create replay report from log files

Program t wbrrep reports on the differences between a log file created by the proxy as
when driven by the driver and the log file used by the driver. This log file used by the
driver could be a log file created by the proxy as a result of capturing transactions; or
some edited version of such a file. It could also in turn be a log file created by the proxy
whilst being controlled by the driver.

The program is passed both file names on the command line as arguments. The first
stage is the production of activity level inventories of both files. These inventories are
checked against each other and any mismatches are reported. A plan for selecting these
activities can be produced as an option.

Each of the matching activities are then compared logically with masking. Each activity
in which a difference is detected is marked as such. On a final pass through the file, these
activities are formatted and printed on a report. A plan for selecting these activities can
be produced as an option.

4.13 twbsplit—Split a log file on a pivot record

Program twbsplit makes two new log file from an existing log file. The two new log
files are the prefix and suffix of the input log file where the first record of the second new
log file is the sequence number (or first sequence number greater than or equal to that)
passed as the first The resultant log files are more compact and efficient to process when
only few sessions from the original file are to be processed in the same drive session.

Code Magus Limited 45 CML00032-01

4.14 twbstrip—Strip sessions out of a log file 4 PROGRAMS

4.14 twbstrip—Strip sessions out of a log file

Program t wbst rip makes a new log file from an existing log file but includes only the
sessions indicated on the command line. The resultant log files are more compact and
efficient to process when only few sessions from the original file are to be processed in
the same drive session.

4.15 twbvi3270—View log file containing 3270 data streams

This program reads a log file and replays back a a selected session on a logged in termi-
nal.

4.16 twbrep3270—Report on 3270 activities in a session

4.17 twblnav—Navigate log files

This program allows a log file to be navigated from a command line interface. Because
twblnav also provides +ACK and —ACK feedback on commands entered, it is suitable
for being driven by an application domain specific log file navigation program.

The log file navigation commands are actually provided by the library twbnlib.o. It
is this library that is embedded in the twbdrive program to make the log file naviga-
tion commands available to the driver.

The log file navigation program (actually the library) provides a means of opening and
closing log files; opening and closing sockets for data; reporting and setting the position
within the log file; and sending selected data on one of the open sockets. An open log
file can be repositioned anywhere in the log file based on the record sequence number or
by the position within the log file. Care should be taken that the positions used actually
correspond to the start positions of log file records. The current log record position can
be sent on a data socket; reading forwards and backwards and with or without sending
the corresponding data on a socket is also supported. The current working directory can
be changed as well as queried.

Code Magus Limited 46 CML00032-01

4.17 twblnav—Navigate log files

4 PROGRAMS

Command

\

HelpCommand I

ShellCommand I

OpenCommand I

CloseCommand I

SeekCommand

I

GetNextCommand I

GetPreviousCommand —

SendCommand ——/

SkipNextCommand I

SkipPreviousCommand —

ShowCommand I

N

SetC omman;‘

(e L L

GetCommand

I

ChdirCommand I

.

PwdCommand

I

.

QuitCommand

L

-

AbortCommand ——

Code Magus Limited

47

CML00032-01

4.17 twblnav—Navigate log files 4 PROGRAMS

HelpCommand

help —

help — shell

help —~ open

help + close

help (~ seek

help — getn

help —~ getp

help —+ send

help (—~ skipn

help — skipp

crr Ul lTTT

help —~ show

help —~ set

L

help -~ get

L

help (~ chdir

help —~ pwd

N

help (—~ quit

e fffffffffffff#

N

help —~ abort
Shell Command

— shell -~ String ——

The String is interpreted as shell command using the system () function. The process
exit status is used to determine with the command was successful or not. The command
status is reported as +ACK if the exit status from the shell command is zero and —ACK
otherwise.

The shell command processes standard out and standard error files are echoed back to

Code Magus Limited 48 CML00032-01

4.17 twblnav—Navigate log files 4 PROGRAMS

the command interface shell.

This is one way in which a driving application can obtain, for example, a plan file of a
particular log file as the following example illustrates. A program issuing the shell
command can read the response of the command up but excluding the feedback string
+ACK or —ACK:

Code Magus Limited 49 CML00032-01

0S paywry snSepy po)

10-C€000TIND

lnav> shell "twbarep —--plan Logs/monday_trevor_2_capture_testers.00000000"
[twbarep] $Id: twbarep.c,v 1.13 2010/10/25 14:51:55 hayward Exp $
Copyright (c) 1996-2001 by Stephen Donaldson [stephen@codemagus.com].
End of log file Logs/monday_trevor_2 capture_testers.00000000 encountered
#
Log name(s) :
0. Logs/monday_trevor_2_capture_testers.00000000
#
create (SCREATE_LOG) from(Logs/monday_trevor_2_capture_testers.00000000)
#
include name ("LOGON") session(0) from(0) to(25) pos(0)
notes ("LOGON:\n"
"Start=0, end=25, end by=ACTIVITY ENDED\n"
"Sess=0, src=10.20.1.16:2648, dst=192.168.207.1:23\n"
"Start time=Tue Apr 17 07:31:59 2001")
#
include name ("0173A") session(0) from(26) to(45) pos(3265)
notes ("0173A:COTSTO01 :Correct a rejected merchant deposit.\n"
"Start=26, end=45, end by=ACTIVITY ENDED\n"
"Sess=0, src=10.20.1.16:2648, dst=192.168.207.1:23\n"
"Start time=Tue Apr 17 07:41:14 2001")
#
include name ("0272A") session(0) from(46) to(75) pos(10718)
notes ("0272A:COTSTO01l :Set up a new account within a new hierarchical structure.\n"
"Start=46, end=75, end by=ACTIVITY ENDED\n"
"Sess=0, src=10.20.1.16:2648, dst=192.168.207.1:23\n"
"Start time=Tue Apr 17 07:42:27 2001")
#
include name ("0173A") session(0) from(76) to(91) pos(33889)

LTy

So[y 30[MeIIANBN—APUTqMT

SINVYDOdd ¥

4 PROGRAMS

twb1lnav—Navigate log files

4.17

(uT00Z 9%:82:80 LT ady onr=swI3l 3Ie3S,
WUNEZ:T L0Z°89T C6T=3SP ‘T199Z:9T1°T1°0Z 0I=0as ‘T=sSsag,
WwU\NJIANAT XLIATIIOV=AQ pus ‘Qzz=pus ‘gLT=3I€1S,
:C/.@HSMUDMM@ TedTydSJIeJdoTy MU © UTU3ITM JUNOODOE MU ® dn 199 WPON._”._”ZHAQ‘NPNO_L@@QOG
(€109L)sod (022)03 (6LT)WOIF (T)UOTISSSS (,VZLZ0u)DWRU SpnIouT
#
(uTO00Z 8G:97:80 LT IdV¥ SnI=SWT3 3Ie3S,
WwUNEZT L0Z 89T Z6T=3SP “‘T199C:9T°T1°0C°0I=2Is ‘I=ssag,
WUNAHIANT ALIAILOV=AQ pus ‘gLI=pus ‘£9T1=3Ie1S,
..C/.uﬂmogmﬁ AUueyoIsu U@pom.ﬁ@uﬁ ']1092IJ0)D: WPON._HHZHA&MP._HO__mepOG
(G990L)sod (8LT)03 (£9T)woxa3y (T)UOISSSS (,YELTO0.)OWEU SPNTOUT
#
(WT00Z 90:97:80 LT Idv¥ onI=2wWT3 3Ie3S,
WUNEZ T L0Z 89T Z6TI=3SP ‘T199C:9T T 0C 0I=2Is ‘I=ssag,
WUNTIANT XLIAILDV=AQ pus ‘z9I=pus ‘(Q=3Ie3S,
WU\ :NODOT.) S230U
(0)sod (z91)03 (0)woIF (T)UuOTsSsas (,NODOT,)SdWeu SpPNTOUT
#
(uT00Z 2£:2S:L0 LT Idv¥ onI=SwWTl 3Ie3S,
WUNEZ:T L0Z°89T Z6T=3SP “8%92:9T T °0Z 0I=0as ‘Q=ssag,
WU\ANHAZZ=AQ pus ‘ggzli=pus ‘Z=3Ie3S,
:G/.@HSMOSMMW TedTydSJIeI=sTy MU & UTUZTM JUunooOor MU ® dn 198 . ._HOHWHOUUAQNPNO_LW@MOG
(ccz6g)sod (62T)03 (Z6)WOIF (0)UOTSSSS (,YZLZ0.)DWRU SPNTOUT
#
(wT00Z LP:TG:L0 LT 2dy Snl=2WI3 23Ie1S,
WUNEZ:T L0Z°89T Z6T=3SP ‘8%92:91°T°0C 0I=0as ‘Q=ssag,
WwU\NTIANT ALIAILOV=AQ pus ‘Tg=pus ‘9,.=33e1S,
WU\ *3Tsodsp jueydisw peoloslex © 309I10D: TOILSIOD:YELTIOL) Se30U

CML00032-01

51

imited

Code Magus L

4 PROGRAMS

twb1lnav—Navigate log files

4.17

0¥+

(uT00Z 87:60:60 LT IdY SnI=SWT3 3Ie3S,
WU\NEZ:T L0Z 89T C6T=3SP “I99C:9T T 0C 0I=2Is ‘I=ssag,
WUNQIANT ALIAILOV=AQ pus ‘Tzg=pus ‘QIc=3Ie1S,
WU\ "3Tsodep jueydisw pPo3dalad e 9239[9d: FLOZTIN:YFLIOW) S@30U
(PpG9LT)sod (1zg)o3 (0Tg)woTF (T)UuoOTSsSaS (,¥YHyLT0u)SWEU SpnTouT
#
(uT00Z 8G:GP:80 LT IdV SnI=SWT]1 3Ie3S,
WUNEZ: T L0Z 89T Z6T=3SP “‘TI99C:9T 1 0C 0T=°Is ‘I=ssag,
WUNQIANT ALIAILOV=AQ pue ‘pQg=pus ‘1zZ=3Ie1S,
:G/.@HSMOﬂTHpm TedTydSIeI=sTy M2U B UTU3ITM 3UNOODOE MU ® dn 195G . WPQNHHZ:&NPNO:VmwnﬁOG
(8T260T)sod (F0g)03 (TZZ)woxF (T)UOTSSSS (,¥YZLZ0u)SWRU SpnTouTt

CML00032-01

52

imited

Code Magus L

4.17 twblnav—Navigate log files 4 PROGRAMS

OpenCommand

T open (—~ log — String f
open —~ socket —~ String —~ Hostname @» Number

At any point in time only one log file can be open. This log file is opened using the
open log command. If alog file is already open, then it closed before the new log
file is opened.

Many data sockets can be open at the same time. Consequently, to distinguish amongst
the open data sockets, the sockets are give names on the open socket command.
Subsequent commands which require an open socket to send data use this name to refer
to the socket.

The open performed by t wb1lnav is an active open (i.e. twblnav performsaconnect ()
call) to the indicated adaptor and port.

CloseCommand

ﬁ close (—~ log ﬁ—»

close —~ socket |~ String

The close log command closes the current open log file and the close socket
command closes the named data socket.

SeekCommand

ﬁ seek t~ seq —~ Number 7—~
seek —~ pos 1 Number

The seek command is used to re-position the current open log file to the indicated
position or log record sequence number.

GetNextCommand

— getn —~ String —

The getn command reads the next log record from the current open log file and sends
the data on the named open data socket.

GetPreviousCommand

— getp — String —

The getp command reads the previous log from the current open log file and sends the
data on the named open data socket.

Code Magus Limited 53 CML00032-01

4.17 twblnav—Navigate log files 4 PROGRAMS

SendCommand

— send -~ String —

SkipNextCommand

— skipn —~ Number ——

The skipn command skips the indicated number of records forward on the current
open log file.

SkipPreviousCommand

— skipp ++{ Number ——

The skipp command skips the indicated number of records backwards‘on the current
open log file.

ShowCommand

show (~ log — seq

show —~ log -~ pos

show (~ log —~ data

The show log segand show log pos commands report on the current open log
file’s position. The first form reports on the current log file’s record sequence number
and the second form reports on the current open log file’s record position. The following
example illustrates these commands:

lnav> show log seq
AT SEQ 20

+ACK

1nav> show log pos
AT POS 1948

+ACK

The show log data command prints the current record of the current open log file
in the standard hex-dump format:

lnav> show log data
Segq=20, Tue Apr 17 07:36:26 2001: Session=0, outbound data, length=4
src=192.168.207.1:23, dst=10.20.1.16:2648, tod=1004305335.761847
c0..__ .._0O5.._ ..__10..__ .._15.._ .._20..__ .._25.._ .._ 30.
0000: O1C2FFEF
0000: ...B....

Code Magus Limited 54 CML00032-01

4.17 twblnav—Navigate log files 4 PROGRAMS

+ACK

SetCommand

set —~ String

String

set —~ String Number

set —~ String Integer

QOO

The set command is used to set environment variables to particular values.

lnav> set SUBWT_HOST_NAME = P390
+ACK

GetCommand

— get (—~ String

The get command is used to print the values of environment variables.

lnav> get SUBWT_HOST_NAME
set SUBWT_HOST NAME = "P390"
+ACK

ChdirCommand

— chdir ~'String

The chdir command is used to change the current working directory.

lnav> shell 1s

Logs body.aux latexexits report.dvi
Scripts body.tex Imc_samples.zip report.log
TEMP exitpoints report.aux report.ps
+ACK

lnav> chdir Logs

+ACK

PwdCommand

The pwd command reports on the current working directory.

lnav> pwd
/home/stephen/acquirer/Logs
+ACK

report.tex
report.toc
signoff.tex

Code Magus Limited 55

CML00032-01

trace_pse

6 EXTENSIONS

QuitCommand

— quit ——

The quit command ends the navigator session and exits twb1lnav program.

AbortCommand

—{ abort ——

The abort command also exits the navigator session, but produces a core dump file
for diagnostic purposes.

Hostname

ﬁ ipaddress J
Lookuplpaddress

Lookuplpaddress

— String ——

S Examples

6 Extensions

Code Magus Limited 56 CML00032-01

	1 Introduction
	2 Log file structure
	3 Plan files
	3.1 Plan file format

	4 Programs
	4.1 twbarep---Report on activities in a log file
	4.2 twbbview---Viewer a session being proxied
	4.3 twbcloses---Insert missing closes into a log file
	4.4 twbcounts---Count log file session activity
	4.5 twbdrive---Replay log files
	4.6 twbgrep---Search a log file
	4.7 twblogon---Locate log file logon activity
	4.8 twbplan---Build a log file from a plan
	4.9 twbprint---Print a log file
	4.10 twbproxy---Proxy and log circuits
	4.11 twbprt3270---Print a log file of 3270 data streams
	4.12 twbrrep---Create replay report from log files
	4.13 twbsplit---Split a log file on a pivot record
	4.14 twbstrip---Strip sessions out of a log file
	4.15 twbvi3270---View log file containing 3270 data streams
	4.16 twbrep3270---Report on 3270 activities in a session
	4.17 twblnav---Navigate log files

	5 Examples
	6 Extensions

