9 CODE MAGUS

Thistle: Language Reference Version 1

CMLO00078-01

Code Magus Limited (England reg. no. 4024745)
Number 6, 69 Woodstock Road
Oxford, OX2 6EY, United Kingdom
www.codemagus .com
Copyright (© 2011 by Code Magus Limited
All rights reserved

April 2, 2013

CONTENTS CONTENTS
Contents
1 Introduction 3
1.1 Featuresof Thistle 3
1.2 Operating Environment 4
2 Elements of Thistle 7
2.1 Comments e e e e e e e e e e e 7
22 ReservedWords 7
2.3 Special Symbols. 8
24 Identifiers 8
2.5 Literals e 9
2.6 TreeName Space 11
277 Attributes L e e e e 21
2.8 Expressions and Operators 22
3 Thistle Artefacts 31
3.1 Introduction 31
3.2 Thistle Packages e 31
3.3 ThistleUsecases. o o i i i i e e 32
3.4 Thistle Libraries o 33
3.5 ThistleInterfaces 34
3.6 ThistleInstances 34
4 Executable Statements 35
4.1 Compound Statements 40
4.2 Assigment Statementl 40
4.3 Transfer of Control: Method Invocation 40
4.4 Transfer of Control: The return Statement 41
4.5 Conditional Execution 41
4.6 [Iteraction: The for Statement 41
47 Loops: The while Statement 41
4.8 Loops: The repeat Statement 42
4.9 Interrupting Execution: The check Statement 42
4.10 Interrupting Execution: The break Statement 42
4.11 Choosing Name Space Scopes: The with. .do Statement 42
4.12 Aliasing a Name Space: The with..as Statement 42
5 Thistle System Objects 43
5.1 System.StrSubStr 43
5.2 System.StrSplit 43
5.3 System.StrTrim L 44
54 System.REMatch 44
5.5 System.RESplit 45
5.6 System.DateCurrent. 45
5.7 System.DateSerialDays oL 46
5.8 System.DateFormat L. 46
Code Magus Limited 1 CMLO00078-01

CONTENTS CONTENTS

5.9

5.10
5.11
5.12
5.13
5.14
5.15
5.16
5.17
5.18
5.19
5.20
5.21
5.22
5.23
5.24
5.25
5.26
5.27
5.28
5.29
5.30
5.31
5.32
5.33
5.34
5.35

System. TimeCurrento 47
System.TimeFormat 47
System.TimeMilli 48
System.DumpScope 49
System.Write e 50
System.WriteLno 50
System.Format 51
System.GetRC 52
System.SetRC 52
System.GetReason L o oL 52
System.SetReason Lo 53
System.GetDescription L Lo 53
System.SetDescription o 53
System.BinaryPack L 54
System.BinaryUnPack 54
System.CopyDeep 54
System.CopySubTree 55
System.GetEnv 56
System.SetEnv L 56
System.Prompt 57
System.Sleep 57
System.TranslateFromASCIIToString 58
System.TranslateFromEBCDICToString 58
System.TranslateFromStringToASCIT 59
System.TranslateFromStringToEBCDIC 60
System.Defined Names 60
System.Root_Directory 0. 61

Code Magus Limited 2 CMLO00078-01

1 INTRODUCTION

1 Introduction

Thistle is a programming language which has been designed explicitly for scripting and
it has a number of constructs which make it particularly suitable for scripting in the
testing domain.

The language Thistle is based on the programming language Pascal[?, ?]. The inventors
of Thistle have made a number of simplifications and generalisations on Pascal which
have resulted in a language very suitable for scripting. Pascal was chosen as a basis for
Thistle as it already had a number of attributes which makes it a good candidate for a
scripting language.

1.1 Features of Thistle

The Thistle system comprises a compiler and run-time environment or interpreter. The
technology is designed to make sure that implementations can exists on Unix platforms,
on MicroSoft platforms and on OS/390 or z/OS. It should be clear from this document
how character set encodings and endianness of the hosting system do not affect the
Thistle scripts.

We assert that Thistle is a good scripting language for the following reasons:

Like Pascal, Thistle is a relatively small language, consists of few constructs and is
easy to understand. We have further simplified the language by removing strong typing.
Instead of the type-rich system of Pascal, Thistle only has a single elementary type
which is the string (Chapter 2).

The weak typeing of Thistle and hence the lack of compile-time type-checking is not a
problem for Thistle as Thistle artefacts are always compiled on demand.

Thistle has no aggregation data types such as Pascal’s arrays or records. The only aggre-
gate data structure in Thistle is a tree-like data structure and there exists only one such
tree. This is a generalisation of what is implicit in Pascal and many other programming
languages. In Thistle we have made this explicit to the point where there is only one ag-
gregated data structure which is a dynamic tree and to which all items belong, including
elementary items. The root of this tree is called thistle. Aggregate data structures
such as records and arrays are also represented in this tree and hence hence there is no
need for explicitly defining records or arrays.

This tree view is implicitly present in most programming languages and can be observed
by considering the collection of activation records at run-time together with the scopes
of objects, structures/records, classes, fucntions, procedures, methods and elementary
items present at runtime.

The thist le tree also contains predefined system artefacts. The tree is initialised with
these artefacts when the run-time system starts.

Code Magus Limited 3 CMLO00078-01

1.2 Operating Environment 1 INTRODUCTION

In Thistle, the thistle tree is initialised by the this run-time.

There has also been a conscious effort to make sure that the mapping to the hosting
operating system’s artefacts are handled by the run-time system and the naming con-
ventions of the operating system’s objects (such as files and directories) are not evident
in the syntax of Thistle. Of course, Thistle scripts may still represent the names of such
objects using the conventions of the hosting system for their own purposes. We do this
so that Thistle artefacts can be moved from one user’s system to another (of the same or
different architecture—where that makes sense). Where this happens either because the
scripts are moved or shared between users or projects with different local preferences,
we want to make sure that the content and semantics of the scripts are not voided.

1.2 Operating Environment

Thistle is further isolated from the concrete representations and interfaces of the host-
ing system by the distance it maintains from the hosting system by interacting with it
through a system of portals. Portals are also the means by which the scripts interact with
the System Under Test or SUT when Thistle is used in a testing environment.

Figure 1 shows the relationship of the components of Thistle and its run-time system, its
hosting system and a system under test. The Thistle system comprises a compiler and
a run-time system. The Thistlecompiler has access to Thistle artefacts through a locally
hosted artefact repository. There is a standard naming convention of artefacts as they
are referred to within other Thistle artefacts. The mapping of this name space to a local
name space of the hosting operating system is the responsibility of the Thistle system.
This mapping is configurable and is the mechanism which makes sure that there is no
binding of the name space within Thistle artefacts and the name space of the artefacts
of the host system.

The run-time component prepares for execution of Thistle artefacts by building the
thistle tree with pre-defined types (see Chapter 5). The initial artefact type that
Thistle gives control to is the package. In the testing domain a package corresponds
to a test pack.

A package can give control to usecase artefacts which are syntactically similar to
packages. A usecase in turn can give control to other usecases and so on. Both
aertfact types maintain state for local variables, parameters, etc, is maintained on the
thistle tree.

The executing Thistle artefacts never interface directly with the host system, nor with
any SUT. This is only ever achieved through an interface, with the actual manipu-
lation of either the system component or the SUT being performed by a portal. Inter-
faces are either in-built or user-defined. For user-defined interaces, the interface is de-
scribed to the Thistle system using an interface artefact. Regardless of whether the
interface is built-in or user-defined, the interface is introduced into Thistle packages

Code Magus Limited 4 CMLO00078-01

1.2 Operating Environment 1 INTRODUCTION

Thistle
System

Compiler Run-time
Artef ‘t Y
rtefac
Repository Package

Usecase-2

Usecase-1

A
| Usecase—3 | | Usecase—4 | | Interface—e |] Interface—a | | Interface-b
A\ 4 A 4 A\ 4
| Interface—-c | | Interface—d | | Portal-D | Portal-A
4 A\ 4 4 4
| Portal-B | | Portal-C | | Data-source-2 | SUT-channel-a
A\ 4 A 4

|SUT—channeI—b | |Data—source—l |

Figure 1: Thistle components and relationship to surrounding systems

Code Magus Limited 5 CMLO00078-01

1.2 Operating Environment 1 INTRODUCTION

and usecases in the same manner, and for all practical purposes there is no disticntion
between the types of interface.

The responsibilities of a portal (which is not a Thistle language defined artefact) are to
manipulate the SUT, operating system, component, data source, etc. and to map the
name-space of the component to the name-space of Thistle. In this manner, the This-
tle artefacts of type package and usecase can directly manipulate the object. The
featurs of the language and the portals together make it possible to manipulate objects
(other applications, data sources, operating system objects, etc.) in a seamless, coherent
manner. This does not mean that an understanding of the objects being manipulated
is not required, but that the language framework and syntax does not have to be ex-
tended or re-learned because of an expanding collection of data sources, applications,
and operating system components that can be interfaced to.

Code Magus Limited 6 CMLO00078-01

2 ELEMENTS OF THISTLE

2 Elements of Thistle

A program or script in Thistle is structured in a very similar way to Pascal programs
and even though there is essentially one elementary un-structured type, the litrals of
this type can have a form which implies an refined sub-type. Put another way, whilst
every elementary item in Thistle is a string, literals which look like integers, characters,
dates are simply representations of strings. There are also hexadecimal literals and
compressed hexadecimal literals.

Consequently a data item which defines an elementary value is simply a string and the
assignment:

Details.Account := 1048010481;
is indistinguishable from the following assignment:
Details.Account := 71048010481';
and in this case establishes the existance of the identifier if it does not already exist.

From the above fragments and the discussion on Thistle’s geneology, the elements of
Thistle are very similar to what one would expect from a contemporary programming
language and comprise reserved words, special symbols, identifiers, literals, comments,
expressions and operators. Thistle scripts are free format and white spaces have no
grammatical meaning except where they might appear within string literals.

2.1 Comments

Comments in Thistle have no effect on the meaning and are completely ignored by
the interpretation of the script. Comments are introduced using the left brace ({) and
continue up to and including the next right brace (}). Comments can span lines and
can contain any characters except the right brace (}) which would end the comment.
Consequently, comments in Thistle cannot be nested.

2.2 Reserved Words

Reserved words are sequences that have a special meaning in terms of directing the
parsing of Thistle and the recognition of valid artefacts in terms of the Thistle syntax.
The ‘definition’ of the words are dealt with in the discussion of the respective syntactical
construct. The Thistle reserved words are:

Code Magus Limited 7 CMLO00078-01

2.3 Special Symbols

ELEMENTS OF THISTLE

and array begin case div

do downto usecase delete else
end external file for forward
function goto created 1if in
label mod exit not of

or by packed procedure package
run repeat set then to
isodate type until var while
with check break when modified
int real string accept desc
date target note interface method

library as

There are a few words listed above which do not correspond to current syntactical con-
structs of the language. These either correspond to features removed from the language
or are reserved for future extensions to the language.

2.3 Special Symbols

There are a number of sepcial symbols made up of either one character or pairs of char-
acters. These, together with the reserved words, comprise the operators and delimiters

of the language.

; See Section 4
1= See Section 4.2 and Section 4.6
<> See Section 2.8
> See Section 2.8
< See Section 2.8
<= See Section 2.8
>= See Section 2.8
= See Section 2.8
- See Section 2.8
: See Section 4
{and } See Section 4

<and > See Section 2.5
[and] See Section 2.6

2.4 Identifiers

Identifiers in Thistle are not quite the same as they are in Pascal. In Thistle identifiers
are restricted names of nodes in the name space tree (see Section 2.6). Identifiers are
case sensitive, they start with a letter which can be followed by any number of letters or
digits and the under-score character.

Code Magus Limited 8 CMLO00078-01

2.5 Literals 2 ELEMENTS OF THISTLE

Identifier

| IBI | | IZI
| Ibl | | IZI
| Ill | | I9I

2.5 Literals

Whilst all literals can thought of as strings, they can be expressed as numbers, string,
hexadecimal strings, or compressed hexadecimal strings:

Literal

String

Number

HexadecimalString

CompressedHexadecimalString

Thistleis an interpreted language and the resolution of values into concrete types does
not need to occur until run-time. Consequently, as all input is ultimately user input, the
type system exposed comprises a single type which is the string. The fact that a string
may or may not be described by a further restricted domain such a a numeric string only
needs to be checked and or considered at run-time. It is left up the use of a string to
determine whether or not the value is appropriate (for example, an arithmetic operator
requires a numeric value in its string operands). This does not mean that the implemen-
tation cannot store intermediate results in the most appropriate concrete format.

The generic string literal has the following format:

Code Magus Limited 9 CMLO00078-01

2.5 Literals 2 ELEMENTS OF THISTLE

Escape

Character Character encoded in string
alarm or bell

back space

forms feed

new line

carriage return
horizontal tab

vertical tab

apostrophe

" quotation marks

\ backslash character itself

SN s B3 Hh O W

Table 1: Escape characters and their corresponding encoded characters

String

— SequenceWithoutApostrophes

SequenceWithoutQuotes

where SequenceWithoutApostrophes is a sequence of characters excluding apostrophes,
and SequenceWithoutQuotes is a sequence of characters excluding quotation marks.
Neither string can contain the newline character (i.e. strings cannot span source text
lines), but they can contain escape characters, one of which represents the newline char-
acter. Also representable as escape characters are apostrophes and quotation marks. An
escape sequence comprises the \ character followed by a character indicating the actual
character to appear in the string:

EscapeSequence

1 ra’ | b’ | 'f’ | 'n’ | 'r’ | ‘t’ | ‘v’
’ / " / ? /\ J/

Where the esacpe characters and the encoded characters are explained in Table 1.

A number can be represented as a quoted string or as a sequence of digits without the
quotation marks or apostrophes:

Number
(’O’ | Ill | ...l 19’)

Code Magus Limited 10 CMLO00078-01

2.6 Tree Name Space 2 ELEMENTS OF THISTLE

A HexadecimalString allows any sequence of character values to be encoded and has
the following format:

HexadecimalString

—@T HecadecimalDigitPair T@—

Where

HexadecimalDigitPair

%o' L.l 9T | rar | 'f%
Q(lol | ool 79 | ral | ... lf/)_>

The uppercase equivalents of the hexadecimal digits digits “a’ ...” £’ may be used in
place of their lower case counterparts.

A CompressedHexadecimalString is a compressed representation of its uncompressed
value and has the following format:

CompressedHexadecimalString

—@T HecadecimalDigitPair T@—

Whilst strings cannot span Thistle source code lines, string expressions with the same
intended value can. This is achieved using the # string concatenation operator.

2.6 Tree Name Space

All names exposed, created and used by Thistle artefacts are stored within a single name
space. This name space is organised as a tree structure with the root of the tree named
thistle. The construction of structured types such as maps, arrays, and aggregates is
achieved by maintaining sub-trees within the thist le name space.

Elementary items in Thistle artefacts appear in the same tree as leaf nodes. For example,
Details.Account above, above without further qualification refers to:

thistle.Packages[0] .Details.Account

Code Magus Limited 11 CMLO00078-01

2.6 Tree Name Space 2 ELEMENTS OF THISTLE

Figure 2 shows the top of the thistle tree and shows the hierarchial view of the
position of the node Account. The figure shows the structure given that the current
package is the first in the current run-time of the Thistle execution environment. This
also hints at the way in which arrays are mapped to thist 1le name space tree and is a
generalisation of the way in which Thistle handles maps.

thistle

Packages Syst em

:
\

Details ThePackage
Account OpenAccount

Figure 2: Thistle top level name space

A Variable is a path in the name space tree. It comprises either a single node or a se-
quence of nodes or identifiers. The first identifier or node represents a point in the tree
from which a search for the node or identifier should (for references) or will (for new
nodes or definitions) be found. Any subsequent node will be found following the pre-
vious node and must be a direct descendant of that node, or will be a direct descendant
of that node for a definition. A node need not be an Identifer, it could comprise an
expression between [and] (referred to as a PathEvaluation) which will be evaluated
at run-time and whose value is a further expansion of the path. The result of the eval-
uation can result in names of nodes which are not valid Identifiers. This is how arrays

Code Magus Limited 12 CMLO00078-01

2.6 Tree Name Space 2 ELEMENTS OF THISTLE

are defined in Thistle and which are implemented simply as the more generic map data
structure. The content of the ‘names’ of such nodes are not restricted at all.

Variable

T Identifier —~ VariableConcatenation J -
PathEvaluation —~ VariableConcatenation

where

VariableConcatenation

Variable

PathEvaluation —~ VariableConcatenation

and

PathEvaluation

—»@—» Expression »@—»

The Expression may evaluate to string whose format is not a valid Identifier or sequence
of Identifers. For example, the path:

TheUsecase[0] .Details.Account[’A B C’'] := 1048010481;

refers to a variable which, after (and possibly before) execution of the assignment state-
ment represents the path shown in Figure 3. The figure shows the names of the nodes
and the relationship amongst the nodes. This example demonstrates how arrays (indexed
by numeric values) and maps (indexed by strings) are treated in a generalised manner in
Thistle which includes aggregates (st ructs in C or records in Pascal).

Because the height of the tree can grow significantly as a result of the combination of
uses of aggregates, maps and arrays as well as Thistle packages and usecases, path
names can become quite long especially if fully qualified from the thistle node.
This can have the effect of making the script bodies quite dense and difficult to read
and maintain. Thistle provides a mechanism that shortens names by supplying name
search start points in the thistle tree. This mechanism has the effect maintaining
nested open scopes in much the same way that Pascal opens scopes for local variables
whilst keeping the previously open containing scope open. As with Pascal it is also
possible to explicitly open a scope within a portion of the executable code using the
with statement (see Section 4.12). For example, in the following code fragment, all
the assignments of the literal 1048010481 are the same:

TheUsecase[0] .Details.Account := 1048010481;

Code Magus Limited 13 CMLO00078-01

2.6 Tree Name Space 2 ELEMENTS OF THISTLE

TheUsecase

I

0

'

Details

I

Account

1048010481

Figure 3: Resultant evaluated path and node values

Code Magus Limited 14 CMLO00078-01

2.6 Tree Name Space 2 ELEMENTS OF THISTLE

AddClient .NewClient := ’'TheUsecase[0].Details.Account’;
[NewClient] := 1048010481;

AddClient .NewClient := ’'TheUsecase[0]’;
[NewClient] ['Details.Account’] := 1048010481;

It should be clear from the above, that when used as a map data structure, the meaning of
the period in a key string will add another layer to the name space tree. So for example,
assume in the following that the nodes, except for the first, do not yet exist, then the
assignment

AddClient .OldAccount [/ Peter Rabbit’] := 1048010481;

results in the creation of the following structure in the name space tree:

AddClient

OldAccount

Peter Rabbit

1048010481

And the assignment
AddClient .0OldAccount [/ Peter S. Rabbit’] := 1048010481;

results in the creation of the following structure:

Code Magus Limited 15 CMLO00078-01

2.6 Tree Name Space 2 ELEMENTS OF THISTLE

AddClient

OldAccount

Peter S

Rabbit

1048010481

A Variable 1s expected to exist wherever it is used except when the item is defined. In
Thistle user Variables and hence the corresponding identifiers are created by the first
occurance of the Variable in the artefact body and they do not have to be defined in the
artefacts preamble. However, whenever a Variable is created, the point within the name
space tree (i.e. the parent of the variable) has to be made explicit. In terms of the nodes
of a Variable this means that the first node has to already exist and must be found by
considering the current hierarchy of open scopes.

Scopes are opened implicitly by method or artefact invocation as well as explicitly
by the script writer using the with statement (see Section 4.12). When a scope is
opened because of an invocation (such as running a package or usecase), a node
with the same name as the package or usecase is created in the name space tree.
This node is where all local script defined Variables are located. For example, the
following code fragment when executed just before the point where the usecase is
about to return control to its caller results in the creation of sub-tree of the name space
shown in Figure 4 (assuming that the contents of the cell A1 in the sheet named in
SheetName with the workbook whose name is in BookName is not the same as the
value in the AccountNumber parameter and assuming the parameter SheetName
contains Sheet1):

usecase CheckAccount (AccountNumber, BookName, SheetName) ;

Code Magus Limited 16 CMLO00078-01

2.6 Tree Name Space 2 ELEMENTS OF THISTLE

interface Portal.Excel : CodeMagus.excel;
begin
CheckAccount.checked := "no’;

CheckAccount .myBook :=
Portal.Excel.Connect (BookName) ;

if CheckAccount .myBook.WorkSheets[SheetName] .A[1]
= AccountNumber then
checked := ’yes’;

if checked = ’"yes’ then begin
ReturnCode := 0;
Reason := '';
end

else begin
ReturnCode := 16;
Reason := ’'InvalidAct’;
end

end.

We have described how interior nodes and leaves are defined, and that leaf nodes repre-
sent variables or methods. These are not the only types of nodes in the name space tree.
In general a node in the tree can be one of the following types:

Leaf attribute These leaf nodes behave as the usual elementary variables of the language. As
mentioned earlier, the type of the value of these nodes is always string as far as
its semantics or observed behaviour is concerned. The implementation is free to
represent the type in any suitable format, but when the value is extracted for ex-
ternal interpretation (for example to pass the value to a portal method), the string
representation is expected to be regenerated (if not already stored as a string) and
passed in this string representation.

In the following code fragment, the string assignment might keep the interal rep-
resentation of the number as a string, but the assignment from the result of the
expression in the second assignment could store the result as a number. Finally,
the i f-statement comparing the two values would perform the compare as though
both items values were numeric and in this example, the boolean value evulates
to true:

{ The result of the following assignment could result in a string
representation of the number, for example as ’'01234’. }

sampleCase.numberA := 01234;

{ The result of the following assignment could result in the

Code Magus Limited 17 CMLO00078-01

2.6 Tree Name Space 2 ELEMENTS OF THISTLE

Packages
3
MyPackage
UseCases
0
[AccountNumber BookName SheetName Rem$ Reason
CheckAccount | | ———————— Portal
1048010481 testdata.xls Sheetl 16 InvalidAct
A 4
h 4 Connect
WorkSheets | =
(Method)
A4
Sheetl
1
1023010231
Figure 4:

Code Magus Limited 18 CMLO00078-01

2.6 Tree Name Space 2 ELEMENTS OF THISTLE

numeric 1234 being stored as the result of the expression. }
sampleCase.numberB := 1233+1;

{ Regardless of the internal representations of the numeric values, th
boolean expression in the following if-statement evaluates to true.

1f (numberA = numberB) and (numberA = 1233+1) then
System.Write (’ The expression evaluated to true!’);

Leaf method The values of these nodes are a callable method. This method can be invoked
by placing the parenthesis behind the name of the method in a Thistle script.
Optionally, any parameters to be passed to the script are listed in these parenthesis.
In the following code fragment, the the first assignment invokes the method after
evaluating the supplied parameter expressions and supplies the value returned by
the method. In the second assignment, the value assigned is the method itself, and
hence the third assignment has the same effect as the first assignment:

{ The first assignment evaluations the string expression argument and
passes the resultant value through to the method for execution
of the method by the Thistle run-time system. }

WorkSheet := Portal.Excel.Connect (myPath # ’'WORKSHEET.XLS');

{ The second assignment copies the method itself without invoking
the method. In this example, the third assignment is behaves in
the same way as the assignment above and results in the invocation
of the method. }

myUseCase.portalConnect := Portal.Excel.Connect;
portalConnect (myPath # ’'WORKSHEET.XLS');

The above code fragment illsutrates that methods (whether they be procedures or
functions are first class objects in Thistle and the following code is quite a valid:

usecase walktree (tree,apply);

begin
for node in tree do
if System.NodeType (node) = ’'SubTree’ then
walktree (node, apply);
else
apply (node) ;
end;

And if the first call to walktree is:

Code Magus Limited 19 CMLO00078-01

2.6 Tree Name Space 2 ELEMENTS OF THISTLE

Subtree nodes

Interface nodes

walktree (myInteriorNode, printleaf);
Where printleaf is defined as:

usecase printleaf (leaf);

begin
System.WritelLn(’ Value is ’ # leaf);
end;

A subtree node is simply an interior node in the name space tree whose children
are also in the name space tree within the Thistle execution environment. The
the node types of children of these nodes can be of any type. In the above code
fragments, the identifiers System and myUseCase represent interior subtree
nodes.

An interface node is an interior node associate with an interface. These nodes
represent the instantiated portals currently active and connected to the execution
environment. These nodes represent the portal instance and any children of these
nodes are interpreted as living outside of the run-time environment. The mapping
of the children of these nodes to the system under test or the portal is the responi-
bility of the portal. As far as Thistle is concerned these nodes are virtual in the
that their interpretation exists outside of Thistle, but their behavour is indistin-
guishable from any other Thistle nodes except that they might expose some side
effects of the portal.

In the following code fragment, the node workbookA is an interface node and
the reference to the spreadsheet cell workbook.WorkSheet .Sheetl.A

1

is to a virtual node. In portals, updates to variables or invocation of methods can

have side effects on other values. For example an application under test might
respond to a transaction and update a variable which makes the transaction result
available. Similarly, updating a cell on spreadsheet may cause a formula in an-
other cell, and hence another variable, to be updated. Not only is it possible to
have such side effects in the children nodes of interface codes, it is also possible
for a side effect to change the shape of the name space sub-tree below the interface
node as the result of updating a variable or invoking a method under the interface
node.

usecase openAccount (workBookPath) ;

interface Portal.Excel : CodeMagus.Excel;

Code Magus Limited 20 CMLO00078-01

2.7 Attributes 2 ELEMENTS OF THISTLE

begin
openAccount .workbook := Portal.Excel.Connect (workBookPath);
workbook.WorkSheet .Sheetl.A[1] := "76102045122080';

end;

Nodes are created on demand and virtual nodes (below interface nodes) can be de-
stroyed, apparantly automatically, by side effects of updates through portals. Nodes
which are not the children of interface nodes and interface nodes can be explicitly
deleted using the delete statement (See Section ??). By being able to create nodes
on demand and using the de 1 ete statement Thistle script code can maintain aspects of
the thistle tree data structure.

2.7 Attributes

All nodes within the thist1e name space and hence the thist 1le tree data structure
have one or more attributes associated with them. These attributes are directly accessible
through the use of the : : operator.

The attributes provided directly by thistle are the following:

type
name
length
value

While it is true that all nodes within the thist 1e name space will have these attributes
available, the particular context will determine whether or not they have an associated
value.

A distinction must be made between the attributes provided directly by thistle to
those that are provided through interfaces, as attributes provided by an interface will be
particular to that interface. In other words, interfaces may contain other attributes in
addition to the thist 1e attributes that are particular to that interface.

Attributes

— Identifier @—» Attribute ——

Code Magus Limited 21 CMLO00078-01

2.8 Expressions and Operators 2 ELEMENTS OF THISTLE

2.8 Expressions and Operators

We mentioned earlier that the only elementary type was the string and that regardless
of the apparent type of a literal, it had the semantics of a string. Expressions in This-
tle operate on strings an return results which in turn are strings. This not to say that
an operator does not require it operands to be within a specific domain. The numeric
operators for example, require that their operands have nummeric values. Additionally,
some operators, apart from not being defined over certain values may also change their
meaning depending on the domain of the values of the operands. In Pascal, a similar
overloading of operators applies to, for example, the relational operatores such as <, =,
>, etc. where the < has a different meaning depending on the type of their operands.

Table 2 lists the Thistle operators, their precedence, associativity, and whether or not
they are monadic or dyadic.

Operator Precedence Associatvity Aridity Type

1= 0 n/a dyadic =~ Assignment
<> 1 left dyadic Relational
>= 1 left dyadic Relational
<= 1 left dyadic Relational
= 1 left dyadic Relational
> 1 left dyadic Relational
< 1 left dyadic Relational
+ 2 left dyadic Arithmetic
- 2 left dyadic Arithmetic
2 left dyadic Concatenation
or 2 left dyadic Boolean
* 3 left dyadic Arithmetic
/ 3 left dyadic Arithmetic
div 3 left dyadic Arithmetic
and 3 left dyadic Boolean
mod 3 left dyadic Arithmetic
not 4 left monadic Boolean
- 4 left monadic Arithmetic

Table 2: Thistle Operators: Precedence, Associativity, and Aridity

As described below, the assignment operator is not a real operator as it does not result in
the evaualtion of a result, but rather causes a side effect. This is different from assign-
ment operator as found in languages such as C and C++ [?, ?] in which the operator has
both a side effect and a value (in C and C++ the value of the result of the assignment
operator is the value of the right-hand side sub-expression). Indeed in Thistle as in Pas-
cal, the assigment operator does not feature in the recursive definition of expressions.
An expression is composed of sub-expressions and elementary items with the operators
symbols and is defined recursively as follows:

Code Magus Limited 22 CMLO00078-01

2.8 Expressions and Operators

2 ELEMENTS OF THISTLE

Expression

w Expression @ —
- MethodCallExpression I
- Expression @—» Expression I
N Expression »@—» Expression I
- Expression »@—» Expression -
- Expression @» Expression -
- Expression @—» Expression I
- Expression Expression L
- Expression Expression |
- Expression »@—» Expression -
- Expression @—» Expression I
N Expression »@—» Expression I
- Expression @ Expression I
- Expression @» Expression -
- Expression @» Expression I
N Variable)
N\ Literal)
Expression /
\\@—> Expression J

Assignment symbol

This symbol is not really an operator in the ordinary sense in that
it does not produce a result which is a function of its left and right ‘operands’. Instead,
the evaluation of the assignment, whether it be in an assignment statement or an if-
statement, causes a side effect which results in the update (and possibly creation) of the

Code Magus Limited

23

CMLO00078-01

2.8 Expressions and Operators 2 ELEMENTS OF THISTLE

variable which appears on the left-hand side of the assignment symbol (See Section 4.2).

Relational Operators These operators compare their left and right sub-expressions
and return a Boolean result which reflects the type of comparisson and the actual oper-
ator used. Unless both left and right sub-expressions are numeric and in the case where
both are elementary, the relational operator performs a string compare in which the or-
dering is lexicographical. When doing so, the local colating sequence of the hosting
encvironment is used.

If need be, once evaluated sub-expressions that result in elementary items will be con-
verted to their string representation before the comparrison is performed.

Howver, when both sub-expressions are numeric, the compares are performed in a ma-
chine in dependent manner with the ordering being the regular real number ordering.

These type conversion rules apply to all the relational operators, and such conversions
are implicitly performed based on the current types mplied by the values of the operators
left and right sub-expressions.

The operands of the relational operators do not have to be elementary items and may be
aggregates (or interior nodes with children). In these cases, the orderings are not total
and are evaluated by tree-walks of the evaluated left and right sub-expressions.

The following descibes the meaning of the operators where both left and right sub-
expressions evaluate to elementary items.

< The left sub-expression is evaluated and compared to the evaluated right sub-
expression and if the left sub-expression appears strictly earlier than the right
sub-expression in the ordering indicated by the types of the sub-expressions as
determined by the typing rules, then the operator evaluates to true; otherwise the
operator evaluates to false.

In the the following fragment were executed, the code would execute the method
System.WritelLn:

local.lower := "Apple’;

local.higher := ’'Peers’;

if local.lower < local.higher then
System.WritelLn (’'Apples are less than Peers’);

> The left sub-expression is evaluated and is compared to the evaluated right sub-
expression and if the left sub-expression appears strictly later than the right sub-
expression in the ordering indicated by the types of the sub-expressions as de-
termined by the typing rules, then the operator evaluates to true; otherwise the
operator evaluates to false.

If the following fragment results in the invocation of the method System.Writeln.

Code Magus Limited 24 CMLO00078-01

2.8 Expressions and Operators 2 ELEMENTS OF THISTLE

local.lower := 1;

local.higher := 2;

if not (local.lower > local.higher) then
System.WritelLn (’One really is less than two!!’);

= The left sub-expression is evaluated and compared to the evaluated right sub-
expression and the operator evaluates to true of the operands are determined
to be equal. As with the other relational operators, depending on whether the
operands can be converted to numeric values, an implicit conversion could be
performed. For example, in the following fragment, the operands of the equals-
operator are compared and the result of the operation is true causing the method
System.WriteLn to be invoked.

local.first_number := 0001;
local.second_number := "17;
if local.lower = local.higher then

System.WriteLn (' The numbers are equal!’);

<> The left and right sub-expressions are evaluated and compared. The result evaulates
to true if the operands are not equal. The following two fragments both cause the
method System.WriteLn to be invoked; or neither causes the method to be
invoked:

if local.lower = local.higher then
System.WriteLn (' The numbers are equal!’);

if not (local.lower <> local.higher) then
System.WriteLn (' The numbers are equal!’);

<= The left sub-expression and right sub-expressions are evaluated and the results
compared. The operator evaluates to true if the left sub-expression appears earlier
than the right sub-expression in the appropriate ordering or the operands compare
equal.

>= The left sub-expression and right sub-expressions are evaluated and the results
compared. The operator evaluates to true if the left sub-expression appears later
than the right sub-expression in the appropriate ordering or the operands compare
equal.

The relational operators are also defined in the case where both left and right sub-
expressions do not evaluate to elementary items. For example, when one of the operands
evaluates to an aggregate or sub-tree. In this case the operator is evaluated by walking
the sub-tree comparing sub-trees and leaf nodes (or elementary items) based on the
items names within the sub-trees.

In the description of the operators for the case where the operands are not both elemen-
tary items, the following code fragment is assumed to have created the context in which
the relational operators are evaluated in the examples below:

Code Magus Limited 25 CMLO00078-01

2.8 Expressions and Operators 2 ELEMENTS OF THISTLE

local.A.a := "a’;
local.A.b "o’;
local.A.c := 'c’;
local.B.a := "a’;
local.B.b := "b’;
local.B.c rc’;
local.C.a ra’;
local.C.b "b’;
local.D.a := "a’;
local.D.x := "y’

< The left and right sub-expression operands are evaulated and if resultant left
operand sub-tree is imbedded in the right operand sub-tree then the operator eval-
uates to true; otherwise the operator evaluates to false. For example, in the fol-
lowing code fragment, the method Is.Imbedded is invoked, but the method
Is.NotImbedded is not invoked:

if local.A < local.C then
Is.Imbedded(local.A, local.C);

if local.A < local.B then
Is.NotImbedded(local.A, local.C);

If there is either an additional item (aggregate or elementary) in the evaluated left
sub-tree value which does not appear in the evaluated right sub-tree value, or an
elementary value in the left sub-tree is not less than the corresponding (has the
same name and parents, and so on) elementary value in the right sub-tree, then
the comparrison evalues to false. Further, if the evaluated left and right sub-tree
operands are identical in structure and they have the same elementary leaf item
values, then the operator evaluates to false.

> The left and right sub-expression operands are evaluated and if the resultant right
operand sub-tree is imbedded in the left operand sub-tree then the operator evaulates
to true; otherwise the operator evaluates to false. For example, in the following
code fragment, the method Is. Imbedded isinvoked, but the method Is.NotImbedded
is not invoked:

if local.C > local.A then
Is.Imbedded(local.A, local.C);

if local.C > local.D then
Is.NotImbedded(local.C, local.D);

If there is either an additional item (aggregate or elementary) in the evaluated
right sub-tree value which does not appear in the evaluated left sub-tree value, or
an elementary value in the left sub-tree is not less than the corresponding (has the
same name and parents, and so on) elementary value in the right sub-tree, then
the comparrison evalues to false. Further, if the evaluated left and right sub-tree

Code Magus Limited 26 CMLO00078-01

2.8 Expressions and Operators 2 ELEMENTS OF THISTLE

<>

operands are identical in structure and they have the same elementary leaf item
values, then the operator evaluates to false.

The left and right sub-expressions are evaluated and if the resultant trees are iden-
tical in structure and the elementary leaf items have the same values, then the
operator evaluates to true; otherwise it evaluates to false. In the following exam-
ple, the method Is.Equal is invoked, but the method Is.NotEqual is not:

if local.A = local.B then
Is.Equal (local.A, local.B);

if local.A = local.C then
Is.NotEqual (local.A, local.C);

if local.C = local.D then
Is.NotEqual (local.C, local.D);

The left and right sub-expression operands are evaluated and if either the left
operand sub-tree is imbedded in the right operand sub-tree or the right operand
sub-tree is imbedded in the left operand sub-tree, but the two sub-trees are not
idendical then the operator evaluates to true; otherwise it evaluates to false. In
the following example, the method Is.Imbedded is invoked, but the method
Is.NotEqual is not:

if local.A <> local.C then
Is.Imbedded(local.A, local.C);

if local.A <> local.B then
Is.NotEqual (local.A, local.B);

Note that the following two if-statements do not have the same meaning given
that the relation operators do not always define a total ordering:

if local.A <> local.C then
Is.CheckOperands (local.A, local.C);

if not (local.A = local.C) then
Is.CheckOperands (local.A, local.C);

The left and right operand sub-expressions are evaluated and if the resultant left
sub-tree is imbedded in the resultant right sub-tree (as defined above for the <
operator) or the two sub-trees compare equal under the definition of the = operator
as described above, then the <= operator evaluates to true; otherwise it evaluates
to false.

The left and right operand sub-expressions are evaluated and if the resultant right
sub-tree is imbedded in the resultant left sub-tree (as defined above for the >
operator) or the two sub-trees compare equal under the definition of the = operator

Code Magus Limited 27 CMLO00078-01

2.8 Expressions and Operators 2 ELEMENTS OF THISTLE

as described above, then the >= operator evaluates to true; otherwise it evaluates
to false.

Arithmetic Operators The arithmetic operators take numeric operands and produce
a numeric result. The numeric operands can be obtained by string operators and the
context at the time of of the evailation of of the operator (i.e. at run-time) determines
any implicit conversions which might take place. Such conversions are automatic and
have not semantic surprises as all elementary types in Thistle are considered strings
regardless of any internal optimised representations.

All the arithmetic operators are dyadic, except the unary negation operator which has the
same symbol as the dyadic subtraction operator. Also, unlike the relational operators,
the arithmetic operators can only operate on elementatry numeric items.

+ The left and right sub-expressions are evaluated. Both are required to form a
numeric result or a string result which contains valid numerics. For example, in
the following fragment the Boolean expression avaluates to true and the method
System.WriteLn is invoked:

if 70002’+2 = 4 then
System.WriteLn (! Computes!’);

— If used as the unary negation operator, the right sub-expression is evaluated and
the result is expected to be numeric. The result of rvaluating the operator returns
the negation of the evaluated numeric value. In the following example the values
of local.a and local.b end up having the same value, namely —10:

local.a := -10;
local.b := 10;
local.b := —-local.b;

Note that in this example, the first assignment does not involve the negation oper-
ator and the minus sign is part of the number being assigned to 1ocal. a.

When used as dyadic binary operator, the operation performed is subtraction. In
the following example the value that 1ocal .b ends up with is also —10:

local.a := 100;
local.b := 90;
local.b := local.b-local.a;

x The left and right sub-expressions are evaluated and the resultant values are ex-
pected to be numeric. The operator evaluates the product of the left and right
numeric sub-expression values by by multiplyig the left sub-expression value by
the right sub-expression value. In this example, 1ocal.b ends up with a value
of 110:

local.a := 10;

Code Magus Limited 28 CMLO00078-01

2.8 Expressions and Operators 2 ELEMENTS OF THISTLE

local.b := 11;
local.b local.bxlocal.a;

/ The left and right sub-expressions are evaluated and the resultant values are ex-
pected to be numeric. The operator evaluates the quotient of the left and right
numeric sub-expression values by by dividing the left sub-expression value by the
right sub-expression value. In this example, 1ocal.b ends up with a value of
5.5:

local.a := 11;
local.b local.a/2;

div The left and right sub-expressions are evaluated and the the resultant values are
expected to be numeric. The div operator performs and generalised integer di-
vision where the result of the division retrurns a integer value. In this example,
local.b ends up with a value of 5:

local.a := 11;
local.b := local.a div 2;

The operation is generalised in the sense that the operands do not have to have
integer values.

mod The left and right sub-expressions are evaluated and the resultant values are ex-
pected to be numeric. The mod operator returns the remainder from the division.
The operator is defined as:

local.qg := local.a div local.b;
local.remainder := local.a-local.gxlocal.b;

The mod operator is generalised in the same sense as the div operator. In the
following example, 1ocal .b ends up with a value of 1:

local.a := 11;
local.b := local.a mod 2;

Boolean Operators The operands of Boolean operators have restrictions which are
similar to the arithmentic operators in that the operand sub-expressions must also eval-
uate to elementary numeric items. However, in order to be valid Boolean values the
numeric values are expected to be in {0, 1}. The Boolean false value is represented by
the integer zero and the Boolean true value is represented by the integer one.

Fundamentally different from the arithmetic operators, howver, and a departure from
the usual Pascal semantics, the order of evaluation of the conjucntion and-operator and
the disjunction or-operator is the same as in C and C++ [?, ?]. That is, the left and right
sub-expressions are evaluated in a left-to-right manner with the the right sub-expression
being evaluated conditionally on the value of the left sub-expression.

Code Magus Limited 29 CMLO00078-01

2.8 Expressions and Operators 2 ELEMENTS OF THISTLE

and The left sub-expression operand is evaluated and if the operand evaluates to true,
the right sub-expression operand is evaluated and the result is the value of the
right sub-expression. If the left sub-expression evaluates to false, then the result
of the evaluation of the operator is false.

In the following, the method Never is never invoked:

local.false := 0;
if local.false and Never ('Mind!’) then
System.WritelLn (’ Should never write this!’);

or The left sub-expression operand is evaluated and if the operand evaluates to false,
the right sub-expression operand is evaluated and the result is the value of right
sub-expression. If the left sub-expression evaluates to true, then the result of the
evaluation of the operator is true.

In the follwing, the method Always is alwayes invoked:

local.false := 0;
if local.false or Always ('’ Invoked!’) then
System.WriteLn (' Should conditionally write this!’);

not The not Boolean operator is a unary operator which evaluates its right sub-
expression operand which is expected to evaluate to a Boolean value. The result
of evaulating the not operator is to negate the Boolean value of the evalated right
sub-expression.

For example, in the following the 1ocal . a ends up with the value of one (true)
and 1ocal.b ends up with the value of zero (false):

local.false := 0;
local.true := 1;

local.a := not local.false;
local.b := not local.true;

The String Concatenation Operator The string concatenation operator (#) can be
applied to any elementary leaf item or literal. The string representations of the resultant
evaluated left and right sub-expressions are concatenated together to form the result
string.

For example, the following takes a integer part and concatenates an decimal point fol-
lowed by decimal digits:

local.amount := local.integer # ’.’ # local.decimalDigits;

Code Magus Limited 30 CMLO00078-01

3 THISTLE ARTEFACTS

3 Thistle Artefacts

3.1 Introduction

There are currently five types of artefacts supported in the latest version' of Thistle.
They are:

Artefact
— " Package "
] Usecase L
- Library L
- Instance |
- Interface i

The artefacts as a collective are an attempt at maximizing the useability and extensibility
of Thistle and will be examined in detail in subsequent sections.

3.2 Thistle Packages

A package is the top run unit in Thistle and corresponds to a program. The package
will typically contain a Header, a Preamble and a Body.

The package identifier is contrained and must have the same name as the file on the
host system.

From a sub-program point of view, while it is free to invoke usecases, librarys
and interfaces, a package cannot invoke other packages.

In Thistle sub-program units do not have to be nested (and in the current implementa-
tion cannot be nested). The units that a Thistle package can invoke are methods or
procedures and functions. There are a number of built-in or pre-defined methods and
these all appear in the tree attached to the node System (see Chapter 5).

A Package has the following structure:

Package

— PackageHeader —~ Body »@—»

!Code Magus Limited Thistle Scripting Language V3.0

Code Magus Limited 31 CMLO00078-01

3.3 Thistle Usecases 3 THISTLE ARTEFACTS

where

PackageHeader

—»@ackage}—» Identifier]

(19
Lo oy

Identifier

and

Body

—— CompoundStatement »@—»

(see Section 4.1 for details of the compound statement).

3.3 Thistle Usecases

A Usecase is very similar to a Package, the only syntactical distinction is in the artefact
type:

Usecase

— UsecaseHeader —~ Body »@—»

where

Code Magus Limited 32 CMLO00078-01

3.4 Thistle Libraries 3 THISTLE ARTEFACTS

UsecaseHeader

—»@secase}—» Identifier _)
(G

Identifier

However, whereas a package may not invoke other packages, a usecase may
certainly invoke other usecases aswellas 1ibrarysand interfaces. A usecase
may not invoke a package.

The usecase identifier, as is the case with packages is constrained to have the same
name as the file on the host system.

3.4 Thistle Libraries

A Library is very similar to both a Package and a Usecase, there are a few syntactical
distinctions, one of which is the artefact type as well as the fact that the 1ibrary
identifier must be followed by a semi-colon.

Library

——{ LibraryHeader — Body »@—»

where

LibraryHeader

—»@_ ibrar% ldentifier F@—»

A library has much the same characteristics as a usecase and may invoke other
library as well as usecases and interfaces. A library may not invoke a
package.

The 1ibrarys identifier, as is the case with packages is constrained to have the same
name as the file on the host system.

Code Magus Limited 33 CMLO00078-01

3.5 ‘Thistle Interfaces 3 THISTLE ARTEFACTS

3.5 Thistle Interfaces

A usecase is an artefact which defines a method. This method is defined in a separate
file which has an internal name which maps to file system path names in an implemen-
tation defined manner. For example, the definition of Portal .Excel in:

interface Portal.Excel : CodeMagus.excel;

defines Portal.Excel under the current instance of the artefact in which it occurs.
The definition of the interface to this portal is taken from the external description using
the path CodeMagus.excel. In this example, CodeMagus maps to an impleme-
nation defined path name which refers to the local operating systems file system. The
last node of such external artefact references always maps to the actual file name on
the host system (with or without an extension and with or without any mandatory case
translation). In this example, CodeMagus . excel might refer to the file

C:\Eresia\Thistle\CodeMagus\excel.tid

on the Microsoft platforms. This same string might map to
/home/testing/thistle/CodeMagus/excel.tid
on Unix platforms and to

ERESIA.CML.TIDLIB (EXCEL)

on MVS, 0S/390 and z/OS platforms.

See Chapter 3.5 for details of the external definitions of interfaces.

3.6 Thistle Instances

An instance is very similar to packages, usecases and librarys. It is different
from this group of artefacts in that it is not intended to be executed but is rather recorded
as an audit log of the execution of a test.

Code Magus Limited 34 CMLO00078-01

4 EXECUTABLE STATEMENTS

4 Executable Statements

Interface definition artefacts in Thistle contain no executable statements, they simply
provide definitions to the run-time system regarding the location of the corresponding
portal, and the protocol for the run-time environment to interact with the portal.

Howver, being a scripting language most artefacts include some logic or code in the
form of executable statements. Portals also provide logic, but apart from the interface
definition, this is done at a level which is hosted by the execution evironment of the run-
time system (or one of its components or connected systems). In anycase, such portal
code is provided by the provider of the access to the channel covered by the portal and
not by the user of Thistle.

Each Thistle language artefact type or element thereof defines its methods (functions or
procedures) using the same grammar. This grammar too is modeled on the executable
statements of Pascal and is described in this chapter. In Chapter 2 the usecase and
package artefact types were introduced. In their respective definitions both artefacts
comprised a header followed by a Body. It is the body of an artefact type which describes
the executable statements of the artefact:

Body

—— Preamble —~ CompoundStatement ——

where the Preamble to an artefact provides certain documentation regarding the artefact.
A Preamble comprises a number of sections some of which are mandatory and some of
which are optional:

Preamble

—— MandatoryPreambleSections]

Q OptPreambleSections 3

Q OptDeclarativePreambleSecions ——

MandatoryPreambleSections provide for information about the creator of the artefact,
some description of the artefact, the date the artefact was created and the target to which
the artefact applies:

MandatoryPreambleSections

—— Creator (~ Description (~ Date ~ Target —

Code Magus Limited 35 CMLO00078-01

4 EXECUTABLE STATEMENTS

Note that the order in which these sections appear is important, and they must be pro-
vided in the order indicated.

Creator

9 {Sin ()—

The creator string is a regular Thistle string literal as described in Section 2?.

Description

—»@esc}—» String »@—»

The Description section provides a mechanism for assiging an comment to the artefact
which is formally part of the description of the artefact. The description is a regular
Thistle string literal as described in Section ??.

Date

——~(date)| 1SODate |+ ; —

The Date section is provided so that a date can be associated with the artefact. This date
is interpreted as the date the artefact was created. ISODate has the ISO date and time
format:

yyyy—mm—-ddThh:mm: ss

Where the portion before the T-character is the date and the portion after the T character
is the time stamp. In the date portion, yyyy is the four digit year, mm is two digit the
month number, and dd is the two digit day of the month. In the format of the time-stamp,
the hh is the hour of the day accordin to the twentry four hour clock format, mm is the
two digit minutes passed the hour and ss is the two digits passed the minute.

Target

—»Garget)—» String »@—»

The Target preamble section is a mandatory comment field which indicates the target
system under test to which the artefact applies. The target is a regular Thistle string
literal as described in Section 2?.

OptPreambleSections provide additional optional data regarding the artefact. Each sec-
tion can appear any number of times, in any order, or not at all. These sections are
provided as additional structured comments so that standardised comments can be in-
cluded as part of every Thistle artefact.

Code Magus Limited 36 CMLO00078-01

4 EXECUTABLE STATEMENTS

OptPreambleSections

\A AdditionalPreambleSections f

AdditionalPreambleSections

T AdditionalPreambleSection j -
AdditionalPreambleSections |~ AdditionalPreambleSection

Where

AdditionalPreambleSection

j NOteS 7—‘
Modified
Notes

—»the)—» String »@—»

The Notes secion is designed so that any additional commentary can be include as part
of the artefact. For example, if the artefacts are being version controlled through a CVS
[?] repository, then you might choose to describe your CVS entries as Notes strings.

Modified

(roattied) (o) s |7

The Modified optional preamble section is provided as a means by which anyone mod-
ifying the artefact can record the name of the user who modified the artefact. A Notes
optional preamble section can be used to record the details of the modification.

The OptDeclarativePreambleSections are not documentary preamble sections. These
sections are used to associate an externally defined artfeact with the current Thistle
artefact and to define the position in the thist le tree that the externally defined arte-
facts are to be located. Examples of such artefacts are the portal (intriduced using the
interface declarative section) and usecase introduced using a declaraitvesection
of the same name (examples of these declarative sections appeared in Chapter 2).

Code Magus Limited 37 CMLO00078-01

4 EXECUTABLE STATEMENTS

OptDeclarativePreambleSections

DeclarativePreambleSections

DeclarativePreambleSections

usecase Variable »@—» Variable °
1nterface>—» Variable »@—» Variable °

Whether an externally defined usecase or an interface to a portal is being intro-
duced to the current Thistle artefact the interpretation of the Variables on the left and
right hand side of the semi-colon remains unchanged. The Variable on the left-hand
side pf the semi-colon is the name in the thistle name space at which the Thistle
run-time system is to attach the externally defined artefact for use within the current
artefact. More often than not, this would cause the creation of the node on the left-hand
side of the semi-colon.

The Variable on the right-hand side of the semi-colon is not in the thistle name
space, but is a Variable in the name space of the hosting run-time system. An imple-
mantaion would map this Variable to the hosting systems fike system name space (as
described in Chapter 2). As mentioned in that chapter, it is the responsibity of the imple-
mentation to map the Variable name into the lcoal systems name space in such a manner
as to mask any local-only naming conventions from the content of the artefact (see the
examples in Chapter 2).

CompoundStatement

Statement

A statement can be any one of the executable statement allowed in an artefact Body:

Code Magus Limited 38 CMLO00078-01

4 EXECUTABLE STATEMENTS

Statement

AssignmentStatement —

IfStatement

ForStatement /

WhileSatement -

RepeaStatement I

WithStatement J
BreakStatement I

CheckStatement I

MethodlInvocationStatement L

ReturnStatement L

ffffffffff%

CompoundStatement I

The Thistle statements are taken from Pascal [?]. Two notable and conscious omissions
are the goto statement and the case statement. Addititionally, Thistle introduces
statements which make the language suitable for scripting language in a testing envi-
ronment, most notably the BreakStatement and the CheckStatement.

As mentioned in the previous chapter all Thistle variables can be brought into exic-
tance by demand and do not have to be declared. This is unlike Pascal, and necessaat-
tes a means of destroying createdvariables and sub-trees of the thist 1le name space.
Thistle has a DeketeStatement which is analogous to the Pascal dispose predefined
procedure.

There is no counterpart in Pascal to the ReturnStatement. The ReturnStatement in This-
tle is very similar the C or C++ return statement.

In the following sections, each of the Thistle statements is described giving its gram-
mar and suitable examples. It might be instructive to give a full example of a small
package:

package CISCreateBusClients;
{ Preamble }

Created by "Han Solo’;

Code Magus Limited 39 CMLO00078-01

4.1 Compound Statements 4 EXECUTABLE STATEMENTS

Description ’CIS Package’;
Date 2003-01-08T22:01:05;
Target "ALPHA’;

usecase CreateNew : MyPlace.CreateNewClientl;

interface Portal.Excel : CodeMagus.Excel;

begin
CISCreateBus_Nedbank.XLS1l := Portal.Excel.Connect (’'tspread.xls’);
for index := 1 to 1 do

CreateNew (Fred.WorkSheet.Sheetl.A[index]);

end.

From the heading, the artefact in this example is a package, itsnameis CISCreateBusClients
and that this package has no parameters.

4.1 Compound Statements

Compound Statements are essentially made up of other statements and could be de-
scribed as a statement “block”.

4.2 Assigment Statement

AssignmentStatement

—— Variable @—» NamedExpression »@—»

4.3 Transfer of Control: Method Invocation

MethodlInvocationStatement

— Variable @ —@—»@—»

Expression

Code Magus Limited 40 CMLO00078-01

4.4 Transfer of Control: The return Statement4 EXECUTABLE STATEMENTS

4.4 Transfer of Control: The return Statement

ReturnStatement

—E=

yCan

Expression

4.5 Conditional Execution

IfStatement

—»@—» Expression »@he@—» Statement 3

l<else>—> Statement J

4.6 Iteraction: The for Statement

ForStatement

Variable »@—» Expression @“ Expression @

Q Statement —

4.7 Loops: The while Statement

WhileStatement

—»@hile}—» Expression Statement ——

Code Magus Limited 41 CMLO00078-01

4.8 Loops: The repeat Statement 4 EXECUTABLE STATEMENTS

4.8 Loops: The repeat Statement

RepeatStatement

—@ @ntiD—» Expression »@—»

Statement

4.9 Interrupting Execution: The check Statement

CheckStatement

—»Ccheck}> String @T Expression T@—@—

4.10 Interrupting Execution: The break Statement

BreakStatement

—E-

7O

String

4.11 Choosing Name Space Scopes: The with. . do Statement

WithStatement

—»@it@—» Variable Statement ——

4.12 Aliasing a Name Space: The with. . as Statement

WithStatement

—»Gvit@—» Variable Identifier —

Code Magus Limited 42 CMLO00078-01

5 THISTLE SYSTEM OBJECTS

5 Thistle System Objects

5.1 System.StrSubStr

System.StrSubStr(string expr, string start[, string length])

Arguments
expr - Required. Any expression that can evaluate to a string from which the sub-
string is extracted.
start - Required. An expression which evaluates to an integer which is the starting

position of the desired substring. The index of the first character
in the string is one.

Length - Optional. An expression which evaluates to an integer which is the number
of characters to include in the returned substring.

Remarks
If length not specified, the substring continues to the end of string.

Example
The following example illustrates the use of the StrSubStr method.

[thisInstance] .datel := "16032002";
System.WriteLn ("the month is " # System.StrSubStr (datel, 3, 2));
{ the output will be "the month is 03" }

5.2 System.StrSplit

System.StrSplit(string expr, string fieldsep)

Arguments
expr - Required. Any expression that can evaluate to a string from which the
substring is extracted.
fieldsep - Required. Any expression which evaluates to a string which is the field
separator to be applied over expr.
Remarks

An array is returned in which index O contains the amount of substrings that were created as a
result of applying the seperator fieldsep to split expr. Subsequent array indices will contain
the substrings returned. If fieldsep is not found in expr, array index 0 will contain 1 and
the entire expr will be contained in array index 1.

Example
The following example illustrates the use of the StrSplit method.

DataRecord := "JM Morrison/8203305467989/Male/Personal Account";

SplitArray := System.StrSplit (DataRecord,"/");

Code Magus Limited 43 CMLO00078-01

5.3 System.StrTrim 5 THISTLE SYSTEM OBJECTS

System.DumpScope (SplitArray) ;

{

0 <property: string len 1> = ’4’

1 <property: string len 11> = ’JM Morrison’

2 <property: string len 13> = 8203305467989’

3 <property: string len 4> = ’'Male’

4 <property: string len 16> = ’'Personal Account’
}

5.3 System.StrTrim

System.StrTrim(string expr)

Arguments
expr - Required. Any expression that can evaluate to a string.

Remarks
A variable is returned which has trailing blanks removed.

Example
The following example illustrates the use of the StrTrim method.

[thisInstance].datel := "16/03/2002 ";

System.WritelLn (datel # "with blank");

System.WritelLn (System.StrTrim(datel) # "without blank");
{ 16/03/2003 with blank 16/03/2003without blank }

5.4 System.REMatch

System.REMatch(string expr, regexp expr)

Arguments
string expr - Required. Any expression thatcan evaluate to a string over which the
regular expression is evaluated and substrings extracted.
start expr - Required. An expression which evaluates to a string which is a valid
POSIX regular expression.
Remarks

If a match is found 1 is returned else O is returned.

Example
The following example illustrates the use of the REMatch method.

[thisInstance] .datel := "16/03/2002";

if (System.REMatch (datel, "[/]1") = 1)
then System.WriteLn ("datel has a /");

Code Magus Limited 44 CMLO00078-01

5.5 System.RESplit 5 THISTLE SYSTEM OBJECTS

else System.WriteLn("datel does not have a /");

{ "datel has a /" should be output }

5.5 System.RESplit

System.RESplit (string expr, string regexp)

Arguments
string expr - Required. Any expression that can evaluate to a string over which
the regular expression is evaluated and substrings ex-
tracted.
string regexp - Required. An expression which evaluates to a string which is
a valid POSIX regular expression. When a match is
found the substring that ends where the matching sub-
string starts will be extracted and added to an array.
Remarks

A variable is returned which is the parent node of an array of return variables. The first member
of the array contains an integer size of the array.

Example
The following example illustrates the use of the RESplit method.

[thisInstance] .datel "16/03/2002";
[thisInstance] .array := System.RESplit (datel, "I[/1");

{ array[0] = 3 array[l] = 16 array[2] = 03 array[3] = 2002 }

5.6 System.DateCurrent

System.DateCurrent ()

Arguments
None - There are no arguments required.

Remarks
A value is returned which represents the number of days since AD 0. The value is based on the
current date as set on the host system.

Example
The following example illustrates the use of the DateCurrent method.

Days := System.DateCurrent ();
System.WriteLn ("Total days since AD 0 " # Days);

{Days will contain the number of days since AD 0.}

Code Magus Limited 45 CMLO00078-01

5.7 System.DateSerialDays 5 THISTLE SYSTEM OBJECTS

5.7 System.DateSerialDays

System.DateSerialDays(string source, string mask)

Arguments
string source - Required. Any expression that can evaluate to a date of the form
provided by the mask.
string mask - Required. An expression which evaluates to string which must
contain the characters which form a mask. The ex-
tracted date is applied to the mask to form a human
readable date. The mask is used to specify the position
and optionally type of the constituent parts of the date.
Remarks

A value is returned which is the number of days given by the source since AD 0. The mask
may contain some or all of the following characters:

e CC - Centuries
e YY - Years
e MM - Months

e DD - Days

The mask must be made up of pairs of characters regardless of whether a single or double digit
is expected.

Example
The following example illustrates the use of the DateSerialDays method.

SerialDays := System.DateSerialDays ("2010-12-08","CCYY-MM-DD");
System.WriteLn("12 Dec 2010 has been " # SerialDays # " days since AD 0");

{SerialDays will contain the number of days since AD 0 on the 12 Dec 2010.}

5.8 System.DateFormat

System.DateFormat (string source, string mask)

Arguments
string source - Required. Any expression that can evaluate to an integer value
which is the number of days since AD 0 till a particular
date.
string mask - Required. An expression which evaluates to string which must

contain the characters which form a mask. The ex-
tracted date is applied to the mask to form a readable
date. The mask is used to specify the position and op-
tionally type of the constituent parts of the date.

Code Magus Limited 46 CMLO00078-01

5.9 System.TimeCurrent 5 THISTLE SYSTEM OBJECTS

Remarks
A date of the format provided in ma sk is returned for the days since AD 0 provided by source.
The mask may contain some or all of the following characters:

e CC - Centuries

e YY - Years

e MM - Months

e DD - Days
The ma sk must be made up of pairs of characters regardless of whether a single or double digit
is expected.

Example
The following example illustrates the use of the DateFormat method.

{Todays Date : 8 December 2010}

System.DateCurrent () ;
System.DateFormat (Today, "YYMM") ;

Today
ShortDate

{Wwill give the date in the form YYMM ie. 1012.}

5.9 System.TimeCurrent

System.TimeCurrent ()

Arguments
None - There are no arguments required.

Remarks
A value is returned which is the number of seconds since 00hOO or midnight. The value is based
on the current time as set on the host system.

Example
The following example illustrates the use of the TimeCurrent method.

theTime := System.TimeCurrent () ;

{theTime will contain the number of seconds since 00hO00.)

5.10 System.TimeFormat

System.TimeFormat (string source, string mask)

Code Magus Limited 47 CMLO00078-01

5.11 System.TimeMilli

5 THISTLE SYSTEM OBJECTS

Arguments
string source -

string mask -

Remarks

Required.

Required.

Any expression that can evaluate to an integer value
which is the number of days seconds since midnight
on a particular date.

An expression which evaluates to string which must
contain the following characters which form a mask.
The extracted time is applied to the mask to form a
readable time. The mask is used to specify the position
and optionally type of the constituent parts of the time.

A time of the format provided in the textttmask is given for the time provided by source.

The mask may contain some or all of the following characters:

e HH - Hours
e MM - Minutes
e SS - Seconds

e TTT - MilliSeconds

The mask must be made up of these groups of characters regardless of whether a single or
double or triple digit is expected.

Example

The following example illustrates the use of the TimeFormat method.

{The current time is 8:17 am}

theTime := System.DateCurrent () ;
printTime := System.DateFormat (theTime, "HH:MM:SS");

{Will give the time in the form HH:MM:SS ie. 08:17:23.}

5.11 System.TimeMilli

System.TimeMilli (string source, string mask)

Arguments
string source -

string mask -

Required.

Required.

Any expression that can evaluate to an integer value
which is the number of days seconds since midnight
on a particular date.

An expression which evaluates to string which must
contain the characters which form a mask. The ex-
tracted time is applied to the mask to form a readable
time. The mask is used to specify the position and op-
tionally type of the constituent parts of the time.

Code Magus Limited

48 CMLO00078-01

5.12 System.DumpScope 5 THISTLE SYSTEM OBJECTS

Remarks
The mask may contain some or all of the following characters:

e HH - Hours
e MM - Minutes
e SS - Seconds

e TTT - MilliSeconds

The mask must be made up of these groups of characters regardless of whether a single or
double or triple digit is expected.

Example
The following example illustrates the use of the TimeMilli method.

5.12 System.DumpScope

System.DumpScope (string expr)

Arguments
string expr - Optional. Any expression that can evaluate to a string which exists
in the thistle tree.
Remarks

This method outputs a list of members of the thistle tree to the thistle output stream. The
scope is determined by expr, which itself must be present in the t hi st 1e tree and thus defines
a scope. If no argument is provided, the method will output every member of the thistle tree
to the thistle output stream.

Example

Person.Name := "Johnny";
Person.Surname := "Wilkinson";
Person.Gender := "male";

System.DumpScope (Person) ;

{
The output will be;

Gender <property: string len 4> = ’'male’
Name <property: string len 6> = ’Johnny’
Surname <property: string len 9> = ’'Wilkinson’

Code Magus Limited 49 CMLO00078-01

5.13 System.Write 5 THISTLE SYSTEM OBJECTS

5.13 System.Write

System.Write(string expr)

Arguments
string expr - Optional. Any expression that can evaluate to a string value.

Remarks
These methods will output the string (or nothing if no string is supplied) to the Thistle output
device. Write will not output a new line character.

Example
The following example illustrates the use of the Write and WriteLn methods.

datel := "16-03-2002";

days := System.DateSerialDays (datel, "DD-MM-CCYY");
new_date := System.DateFormat (days, "CCYY-MMM-DD");
message =

System.Format ("formatted in 2 ways 1: %s, 2: %s",datel, new_date);

System.Write ("The same date is ");
System.WritelLn (message);

{
The output:

"The same date is formatted in 2 ways 1: 16-03-2002, 2: 2002-Mar-16"

5.14 System.WriteLn

System.Writeln(string expr)

Arguments
string expr - Optional. Any expression that can evaluate to a string value.

Remarks
These methods will output the string (or nothing if no string is supplied) to the Thistle output
device. WriteLn in addition will output a new line character.

Example
The following example illustrates the use of the Write and WriteLn methods.

datel
days
new_date

"16-03-2002";
System.DateSerialDays (datel, "DD-MM-CCYY");
System.DateFormat (days, "CCYY-MMM-DD");

Code Magus Limited 50 CMLO00078-01

5.15 System.Format 5 THISTLE SYSTEM OBJECTS

message =

o)

System.Format ("formatted in 2 ways 1: %s, 2: %s",datel, new_date);

System.Write ("The same date is ");
System.WriteLn (message) ;

{
The output:
"The same date is formatted in 2 ways 1: 16-03-2002, 2: 2002-Mar-16"

5.15 System.Format

System.Format (string format expr, [string exprl,..string expr32]

)

Arguments

string format expr - Required. Any expression that can evalu-
ate to string value which is the
format control string.

string exprl, ..string expr32 - Optional. A list of up to 32 string expres-
sions which will be evaluated
according to the format specifi-
cation.

Remarks

This method returns a string which has been formatted according to the format specification in
string format expr . Format specifications always begin with a percent sign (A format specifica-
tion, which has optional and required fields, has the following form.

Example
The following example illustrates the use of the Format method.

datel = "16-03-2002";

days := System.DateSerialDays (datel, "DD-MM-CCYY");
new_date := System.DateFormat (days, "CCYY-MMM-DD");
message =

[o)

System.Format ("formatted in 2 ways 1l: %s, 2: %s",datel, new_date);

System.Write ("The same date is ");
System.WritelLn (message) ;

{
The output:

"The same date is formatted in 2 ways 1: 16-03-2002, 2: 2002-Mar—-16"

Code Magus Limited 51 CMLO00078-01

5.16 System.GetRC 5 THISTLE SYSTEM OBJECTS

5.16 System.GetRC

System.GetRC ()

Arguments
None - There are no arguments required.

Remarks
This function will return a string value of the return code of the current artefact instance.

Example
The following example illustrates the use of the GetRC method.

System.GetRC () ;

5.17 System.SetRC

System.SetRC(num expr)

Arguments
num expr - Required. Any expression that can evaluate to an integer. This will set
the return code of the currently running artefact.
Remarks
None.
Example

The following example illustrates the use of the SetRC method.

System.SetRC (16) ;

5.18 System.GetReason

System.GetReason ()

Arguments
None - There are no arguments required.

Remarks
This function will return a string value of the termination reason of the current

Example
The following example illustrates the use of the GetReason method.

[thisInstance] .reason := System.GetReason();

Code Magus Limited 52 CMLO00078-01

5.19 System.SetReason 5 THISTLE SYSTEM OBJECTS

5.19 System.SetReason

System.SetReason(string expr)

Arguments
string expr - Required. Any expression that can evaluate to a string. This will set
the termination reason of the currently running artefact.
Remarks
None.
Example

The following example illustrates the use of the SetReason method.

System.SetReason ("Create of new account successful");

5.20 System.GetDescription

System.GetDescription ()

Arguments
None - There are no arguments required.

Remarks
This function will return a string value of the description of the current artefact instance.

Example
The following example illustrates the use of the GetDescription method.

[thisInstance] .desc := System.GetDescription();

5.21 System.SetDescription

System.SetDescription(string expr)

Arguments
string expr - Required. Any expression that can evaluate to a string. This will set
the description of the currently running artefact.
Remarks
None.
Example

The following example illustrates the use of the SetDescription method.

System.SetDescription ("Create a new account");

Code Magus Limited 53 CMLO00078-01

5.22 System.BinaryPack 5 THISTLE SYSTEM OBJECTS

5.22 System.BinaryPack

System.BinaryPack (string expr);

Arguments
string expr - Required. Any string that represents a hexadecimal value.

Remarks
If the evaluation is succesful a hexadecimal value is returned.

Example
The following example illustrates the use of the BinaryPack method.

HexValue := System.BinaryPack ("FOF1F1");

{HexValue will contain the hexadecimal value <<FO9F1lF1>>}

5.23 System.BinaryUnPack

System.BinaryUnPack (hex value);

Arguments
hex value - Required. Any value that evaluates to a hexadecimal value.

Remarks
If the evaluation is succesful a string representating the hexadecimal value is returned.

Example
The following example illustrates the use of the BinaryUnPack method.

HexValue := <<FIF1F1>>;
StringValue := System.BinaryUnPack (HexValue);

{StringValue will contain the wvalue "FO9F1F1"}

5.24 System.CopyDeep

System.CopyDeep (string expr)

Arguments
string expr - Required. Any expression that can evaluate to a string which exists
inthe thistle tree.
Remarks

This method returns a list of members of the thist le tree. The scope is determined by expr,
which itself must be present in the thistle tree and thus defines a scope. All nodes contained
in the scope defined by expr are returned.

Code Magus Limited 54 CMLO00078-01

5.25 System.CopySubTree 5 THISTLE SYSTEM OBJECTS

Example
The following example illustrates the use of the CopyDeep method.

with CardDetail do begin

Name := "JM Morrison";
ExpirtyDate := "05/14";
CardNumber := "4076113343763543";
CardType := "VISA";

end

NewCard := System.CopyDeep (CardDetail);

System.DumpScope (NewCard) ;

{
The DumpScope of NewCard will give:

CardNumber <property: string len 16> = "4076113343763543’
CardType <property: string len 4> = ’'VISA'

ExpirtyDate <property: string len 5> = '05/14’

Name <property: string len 11> = ’'JM Morrison’

}

5.25 System.CopySubTree

System.CopySubTree(string value)

Arguments
string expr - Required. Any string value labelling a node which exists in the
thistle tree.
Remarks

This method returns a list of members of the thist le tree. The scope is determined by expr,
which itself must be present in the thistle tree and thus defines a scope. All nodes contained
in the scope defined by expr are returned.

Example
The following example illustrates the use of the CopySubTree method.

with CardDetail do begin

Name := "JM Morrison";
ExpirtyDate := "05/14";
CardNumber := "4076113343763543";
CardType := "VISA";
end
NewCard := System.CopySubTree ("CardDetail");

Code Magus Limited 55 CMLO00078-01

5.26 System.GetEnv 5 THISTLE SYSTEM OBJECTS

System.DumpScope (NewCard) ;

{
The DumpScope of NewCard will give:

CardNumber <property: string len 16> = "4076113343763543"
CardType <property: string len 4> = ’'VISA'

ExpirtyDate <property: string len 5> = ’'05/14’

Name <property: string len 11> = ’'JM Morrison’

}

5.26 System.GetEnv

System.GetEnv(string expr)

Arguments
string expr - Required. Any expression that can evaluate to a string and forms the
required environment variable’s label.
Remarks

GetEnv will retrieve the environment variable value stored with the label expr.

Example
The following example illustrates the use of the GetEnv method.

System.SetEnv ("BOOKPATH", "C:\\SampleBooks\\");

ThePath := System.GetEnv ("BOOKPATH") ;
System.WriteLn ("Copybook path : " # ThePath);
{

Output:

Copybook path : C:\SampleBooks\

5.27 System.SetEnv

System.SetEnv(string expr, string value)

Arguments
string expr - Required. Any expression that can evaluate to a string and will
form the environment variable label.
string value - Required. Any expression that can evaluate to a string and will

form the environment variable value.

Code Magus Limited 56 CMLO00078-01

5.28 System.Prompt 5 THISTLE SYSTEM OBJECTS

Remarks
SetEnv will create a new environment variable that will be made available to the calling process.

Example
The following example illustrates the use of the SetEnv method.

System.SetEnv ("BOOKPATH", "C:\\SampleBooks\\") ;

ThePath := System.GetEnv ("BOOKPATH") ;
System.WriteLn ("Copybook path : " # ThePath);
{

Output:

Copybook path : C:\SampleBooks\

5.28 System.Prompt

System.Prompt (string message, string echoparm, char xout)

Arguments
string message - Required. Any expression thatcan evaluate to a string and will
form the prompt’s message text.
string echoparm - Optional. If present requires a value of “yes” or “no”.
char xout - Optional. If present, any printable character is required.
Remarks

System.Prompt will return the value provided by the user to the prompt dialog. The message
will be displayed in the text area of the prompt dialog. The optional echoparm will determine
whether or not the text supplied to the input area by the user is to be echoed (yes) or masked
(no), by default the text is echoed. The xout char will be used to mask the input text if the
echoparmis set to “no”.

Example
The following example illustrates the use of the Prompt method.

passwd := System.Prompt ("Please provide your password: ","no","x");

5.29 System.Sleep

System.Sleep(int interval)

Arguments
int interval - Required. Any expression that can evaluate to an integer.

Code Magus Limited 57 CMLO00078-01

5.30 System.TranslateFromASCIIToString 5 THISTLE SYSTEM OBJECTS

Remarks
System.Sleep will introduce a delay of interval (expressed in milliseconds) as a result of a
successful call.

Example
The following example illustrates the use of the Sleep method.

System.Sleep (1000);
{System will sleep for 1 second.}

5.30 System.TranslateFromASCIIToString

System.TranslateFromASCIIToString(string expr, char subst);

Arguments
string expr - Required. Any expression that can evaluate to a hexadecimal value.
char subst - Optional. Any character to substitute in the case of encountering a
character that cannot be formatted. If this is not given as
an argument the ’?’ is used when encountering a character
that cannot be formatted.
Remarks

If the evaluation is succesful a string representation of the ascii is returned.

Example
The following example illustrates the use of the TranslateFromASCIIToString method.

AscA := System.TranslateFromASCIIToString (<<464F4F424152>>);
System.DumpScope (Asch) ;

{
<property: string len 6> = ’'FOOBAR’
}

{Using the Optional Replacement Argument}

AscA := System.TranslateFromASCIIToString (<<000000000000>>,"«");
System.DumpScope (Asch) ;

{

<property: string len 6> = " xxxxkx’

}

5.31 System.TranslateFromEBCDICToString

System.TranslateFromEBCDICToString(string expr, char subst);

Code Magus Limited 58 CMLO00078-01

5.32 System.TranslateFromStringToASCII 5 THISTLE SYSTEM OBJECTS

Arguments
string expr - Required. Any expression that can evaluate to a hexadecimal value.
char subst - Required. Any character to substitute in the case of encountering a
character that cannot be formatted. If this is not given as
an argument the ’?’ is used when encountering a character
that cannot be formatted.
Remarks

If the evaluation is succesful a string representation of the ebcdic is returned.

Example
The following example illustrates the use of the TranslateFromEBCDICToString method.

AscA := System.TranslateFromEBCDICToString (<<C6D6D6C2C1D9>>);
System.DumpScope (AscA) ;

{
<property: string len 6> = 'FOOBAR’
}

{Using the Optional Replacement Argument}

AscA := System.TranslateFromEBCDICToString (<<000000000000>>,"«");

System.DumpScope (AscA) ;
{

<property: string len 6> = " sxxxxx’

}

5.32 System.TranslateFromStringToASCII

System.TranslateFromStringToASCII(string expr);

Arguments
string expr - Required. Any expression that evaluates to a string.

Remarks

If the evaluation is succesful the converted ASCII is returned.

Example
The following example illustrates the use of the TranslateFromStringToASCII method.

StrA := System.TranslateFromStringToASCII ("FOOBAR");
System.DumpScope (StrA) ;

{

<property: blob len 6> =
0o0..__.._05..__.._10..__..__15..__.._20..__.._25..

0000: 464F4F424152

Code Magus Limited 59 CMLO00078-01

30..

5.33 System.TranslateFromStringToEBCDIC 5 THISTLE SYSTEM OBJECTS

0000: F.O|O|B.A.R.
}

5.33 System.TranslateFromStringToEBCDIC

System.TranslateFromStringToEBCDIC(string expr);

Arguments
string expr - Required. Any expression that evaluates to a string.

Remarks

If the evaluation is succesful the converted EBCDIC is returned.

Example
The following example illustrates the use of the TranslateFromStringTOEBCDIC method.

StrA := System.TranslateFromStringToEBCDIC ("FOOBAR") ;
System.DumpScope (Strh) ;

{

<property: blob len 6> =
o0..__.._05..__..__10..__..__15..__.._20.. ..__25..

0000: C6D6D6C2C1DY

0000: .F.0.0.B.A.R

}

5.34 System.Defined Names

System.Defined Names

Remarks
The System.Defined_Names object provides a global namespace that can be internally (via
thistle) and externally (via a thistle configuration or tcg) defined.

The System.Defined_Names can be accessed from any scope within any Thistle artefact and
provides convenient access to globally defined items.

The convention for naming Thistle configuration files is that they must be named with either the
same name as the Thistle package artefact that is expected to use the configuration or must be
named default.tcg. The thistle configuration must be present in the same directory as the
Thistle package that will be using it.

So if a thistle package is named “CardDatabase.pts” then the thistle configuration file should be
named either “CardDatabase.tcg” or “default.tcg”.

Code Magus Limited 60 CMLO00078-01

30..

5.35 System.Root_Directory 5 THISTLE SYSTEM OBJECTS

The reasoning behind this convention is that the Thistle configuration is loaded implicitely and
therefore must be known by this convention. The default Thistle configuration is used if the
configuration by the same name as the Thistle package artefact cannot be found.

If the thistle configuration is not loaded, the System.Defined Names namespace will not
be available to the Thistle artefact.

Examples
The following example illustrates the use of the System.Defined_Names namespace.

Assuming that some user had created the following Thistle configuration file at some on their
machine, eg. C:\CodeMagus\CardPack\testdata\scripts\CardDatabase.tcg.

DefaultRootDirectory=C:\
CardScripts=CodeMagus\CardPack\testdata\scripts\
CardData=CodeMagus\CardPack\testdata\data\

An example of accessing the System.Defined Names from a Thistle package would be as
follows:

ThisScript
ScriptData

5.35 System.Root Directory

System.Root Directory

Remarks

The System.Root_Directory provides access to the DefaultRootDirectory as de-
fined in the Thistle configuration file. This functionality provides a great deal of flexibility when
it comes to running the same Thistle artefacts on a range of different hosts with differing config-
urations.

Example
The following example illustrates the use of the System.Root _Directory object.

ThisScript := System.Root_Directory
System.Defined_Names.CardScripts
"CardDatabase.pts";

Code Magus Limited 61 CMLO00078-01

System.Root_Directory # System.Defined_Names.CardData

#

System.Root_Directory # System.Defined_Names.CardScripts # "«

LU
.

	1 Introduction
	1.1 Features of Thistle
	1.2 Operating Environment

	2 Elements of Thistle
	2.1 Comments
	2.2 Reserved Words
	2.3 Special Symbols
	2.4 Identifiers
	2.5 Literals
	2.6 Tree Name Space
	2.7 Attributes
	2.8 Expressions and Operators

	3 Thistle Artefacts
	3.1 Introduction
	3.2 Thistle Packages
	3.3 Thistle Usecases
	3.4 Thistle Libraries
	3.5 Thistle Interfaces
	3.6 Thistle Instances

	4 Executable Statements
	4.1 Compound Statements
	4.2 Assigment Statement
	4.3 Transfer of Control: Method Invocation
	4.4 Transfer of Control: The return Statement
	4.5 Conditional Execution
	4.6 Iteraction: The for Statement
	4.7 Loops: The while Statement
	4.8 Loops: The repeat Statement
	4.9 Interrupting Execution: The check Statement
	4.10 Interrupting Execution: The break Statement
	4.11 Choosing Name Space Scopes: The with..do Statement
	4.12 Aliasing a Name Space: The with..as Statement

	5 Thistle System Objects
	5.1 System.StrSubStr
	5.2 System.StrSplit
	5.3 System.StrTrim
	5.4 System.REMatch
	5.5 System.RESplit
	5.6 System.DateCurrent
	5.7 System.DateSerialDays
	5.8 System.DateFormat
	5.9 System.TimeCurrent
	5.10 System.TimeFormat
	5.11 System.TimeMilli
	5.12 System.DumpScope
	5.13 System.Write
	5.14 System.WriteLn
	5.15 System.Format
	5.16 System.GetRC
	5.17 System.SetRC
	5.18 System.GetReason
	5.19 System.SetReason
	5.20 System.GetDescription
	5.21 System.SetDescription
	5.22 System.BinaryPack
	5.23 System.BinaryUnPack
	5.24 System.CopyDeep
	5.25 System.CopySubTree
	5.26 System.GetEnv
	5.27 System.SetEnv
	5.28 System.Prompt
	5.29 System.Sleep
	5.30 System.TranslateFromASCIIToString
	5.31 System.TranslateFromEBCDICToString
	5.32 System.TranslateFromStringToASCII
	5.33 System.TranslateFromStringToEBCDIC
	5.34 System.Defined_Names
	5.35 System.Root_Directory

