9 CODE MAGUS

cmdname: Command Name Resolver Library
Version 1

CMLO00076-01

Code Magus Limited (England reg. no. 4024745)
Number 6, 69 Woodstock Road
Oxford, OX2 6EY, United Kingdom
www.codemagus .com
Copyright (©) 2014 by Code Magus Limited
All rights reserved

Partner

Business =% August 16, 2016

CONTENTS CONTENTS

Contents
1 Introduction 3
2 Command File Validation 4
2.1 Path Information Validation 4
2.1.1 Path Information 4
2.1.2 Directory Names 5
2.2 Command File Name Validation 6
3 API Reference 7
3.1 cmdname_error () . . v v v e e e e e e e e e e 7
311 Synopsis ... 7
3.1.2 Description e 7
3.1.3 Parameters 7
314 ReturnValue 7
32 cmdname open () e e e e e e 7
321 Synopsis 7
322 Description e e 7
323 Parameters 8
324 ReturnValue 8
3.3 cmdname_close () . . . v i e e e e e 8
33.1 Synopsis ... 8
332 Description e 8
3.33 Parameters 8
334 ReturnValue 8
34 cmdname_resolve () . . . i e e e e e 8
341 Synopsis 8
342 Description e e 8
343 Parameters 9
344 ReturnValue 9
3.5 cmdname_open_file () e 9
35.1 Synopsis 9
352 Description e e 9
3.5.3 Parameters 9
354 ReturnValue 9
3.6 cmdname_open_output () 10
3.6.1 Synopsis 10
3.6.2 Descriptiono e 10
3.6.3 Parameters 10
364 ReturnValue 10
3.7 cmdname_close_file () o i e 10
37.1 Synopsis 10
37.2 Description 10
3.7.3 Parameters 10
374 ReturnValue 11
3.8 cmdname_read_file () e 11

Code Magus Limited 1 CML00076-01

CONTENTS CONTENTS
3.8.1 Synopsis e 11

3.82 Descriptiono e 11

3.8.3 Parameters 11

384 ReturnValue 11

39 cmdname_write_file () e 12
3.9.1 Synopsis e e 12

3.92 Description oo e 12

393 Parameters e e e e e 12

394 ReturnValue 12

A Header file cmdname .h 13

Code Magus Limited 2 CML00076-01

1 INTRODUCTION

1 Introduction

A command name file is a regular text file that holds commands to be executed by any
Code Magus software that exposes a command interface to users in order to configure
and/or manipulate the processing of that software. Using command name files allows
users to write commands in a file so that they can all be executed as a group and possibly
more than once. They are often used by servers at start up in order to configure the
processing environment.

This document explains the rules of command name validation and then the interface to
the Code Magus Limited cmdname library.

The rules (see section 2 on page 4) are documented for the benefit of the users of any
Code Magus software that invokes the library services so that they can correctly name
and place any command files in the file system of the machine running the Code Magus
software.

The library application programming interface (API) (see section 3 on page 7) is doc-
umented for the benefit of the developers using the library services. Functions are sup-
plied to validate and resolve a given command file name and path information into a
fully qualified name (FQN), open the FQN for reading, read a record and close the
FQN.

Code Magus Limited 3 CML00076-01

2 COMMAND FILE VALIDATION

2 Command File Validation

Validation proceeds in two stages; first the path information (including each directory) is
validated and then (possibly later and more than once) a command file name is validated
using the stored path information.

For all validation note that an Identifier restricts both directory node names and file
names. It is case sensitive and starts with a letter which can be followed by any number
of letters, digits or the under-score character.

The following sub-sections explain the validation process.

2.1 Path Information Validation

The path information only needs to be validated once, usually during initialisation of a
utility or program requiring it. It must be supplied either by the program performing
the validation or from the value of the environment variable CODEMAGUS_COMMAND _—
PATH. If no path information is supplied an error is returned.

2.1.1 Path Information

The path information is a delimited list of directories. The delimiter depends on the
operating system (OS) on which the software is running.

Path Information

ﬁDirectory T

OSdelim

OSdelim

ﬁ WindOWS 7—‘
Unix/Linux

Windows

Unix/Linux

%

Code Magus Limited 4 CML00076-01

2.1 Path Information Validation 2 COMMAND FILE VALIDATION

2.1.2 Directory Names

Each directory in the path information must be an absolute directory name, which means
that it must start, for example, with ‘c:\’ or ‘d:/> on Windows platforms and ‘/ on
Linux and Unix platforms. Each directory must also exist within the file system. If
either of these conditions are not met an error is returned.

Directory
— OSRoot DirectoryNode
L OSdirdelim :

OSRoot

Tt Windows 7—»
Unix/Linux

Windows

Unix/Linux 0

%

OSdirdelim

T Windows 7—»
Unix/Linux

Windows

Unix/Linux

%

Code Magus Limited 5 CML00076-01

2.2 Command File Name Validation 2 COMMAND FILE VALIDATION

DirectoryNode

— Identifier ——

A directory node must be made up of an Identifier.

2.2 Command File Name Validation

A command name is a file name and must conform to the following:

— Identifier J
LQR Identifier

The file name is searched for in each directory in the path information starting with the
first directory and continuing in the order given. An error is returned if the file does not
conform to the above rule or is not found in any of the directories.

Code Magus Limited 6 CML00076-01

3 API REFERENCE

3 API Reference

The API interface is defined in the header cmdname . h, see section A on page 13.

3.1 cmdname error ()

3.1.1 Synopsis

char *cmdname_error (void);

3.1.2 Description

This function returns a NULL terminated string describing the last error encountered by
any call to the library.

3.1.3 Parameters

There are no parameters to this function.

3.1.4 Return Value

Returns a NULL terminated string describing the last error message encountered by any
call to the library.

3.2 cmdname open ()

3.2.1 Synopsis

int cmdname_open (char xpath);

3.2.2 Description

This function initialises the cmdname instance and validates the path information that
is used for resolving the fully qualified command file names as per section 2 on page 4.
The parameter path, if not NULL takes precedence over the value of the environment
variable. It is an error if any of the rules for path information fails.

Code Magus Limited 7 CML00076-01

3.3 cmdname_close () 3 API REFERENCE

3.2.3 Parameters

e path
This parameter contains the path information.

3.2.4 Return Value

On success zero is returned, otherwise -1 is returned and the error message can be
retrieved, using the function cmdname _error ().

3.3 cmdname close ()

3.3.1 Synopsis

void cmdname_close (void) ;

3.3.2 Description

This function frees all resources used by the cmdname library.

3.3.3 Parameters

There are no parameters to this function.

3.3.4 Return Value

There are no return value from this function.

3.4 cmdname_resolve ()

3.4.1 Synopsis

char *cmdname_resolve (char *fname);

3.4.2 Description

This function returns a validated fully qualified command file name for the requested
command file name as per section 2 on page 4.

Code Magus Limited 8 CML00076-01

3.5 cmdname_open_file() 3 API REFERENCE

3.4.3 Parameters
e fname

This parameter is the file name to resolve. It must adhere to the restrictions as
described in section 2 on page 4.

3.4.4 Return Value

On success the fully qualified file name is returned, otherwise NULL is returned and the
error message can be retrieved, using the function cmdname _error ().

3.5 cmdname open file ()

3.5.1 Synopsis

cmdname_stream_t *cmdname_open_file (char *fname);

3.5.2 Description

This function initially calls cmdname_resolve () to resolve the fully qualified com-
mand file name and then opens the command file.

3.5.3 Parameters

e fname

This parameter is the file name to resolve. It must adhere to the restrictions as
described in section 2 on page 4.

3.5.4 Return Value

On success a cmdname_stream_t structure is returned which is to be used for reading
and closing the command file using the relevant functions. On error NULL is returned
and the error message can be retrieved, using the function cmdname _error ().

Code Magus Limited 9 CML00076-01

3.6 cmdname_open_output () 3 API REFERENCE

3.6 cmdname open output ()

3.6.1 Synopsis

cmdname_stream_t *cmdname_open_output (char xfname);

3.6.2 Description

This function resolves the supplied file name by using the first path in the list of paths
supplied on the cmdname_open () function and then opens the file for writing.

3.6.3 Parameters

e fname

This parameter is the file name to resolve. It must adhere to the restrictions as
described in section 2 on page 4.

3.6.4 Return Value
On success a cmdname_stream_t structure is returned which is to be used for writing

and closing the command file using the relevant functions. On error NULL is returned
and the error message can be retrieved, using the function cmdname _error ().

3.7 cmdname_close file()

3.7.1 Synopsis

int cmdname_close_file (cmdname_stream_t =xstream);

3.7.2 Description

This function closes the stream indicated by the stream handle supplied and frees all
resources associated with the stream object.

3.7.3 Parameters

® stream

Stream handle returned by the open of the file.

Code Magus Limited 10 CML00076-01

3.8 cmdname_read_file() 3 API REFERENCE

3.7.4 Return Value

On success zero is returned, otherwise -1 is returned and the error message can be
retrieved, using the function cmdname_error ().

3.8 cmdname read file ()

3.8.1 Synopsis

char *cmdname_read_file (cmdname_stream_t #*stream, int *recno, int len,
char xbuf);

3.8.2 Description

This function reads the next text record from the input stream into the buffer buf for
a maximum of len bytes. The text line delimiters (‘\n’ and/or ‘\r’) are stripped from
the end of the buffer and if this results in an empty buffer it will be ignored and the next
record is processed automatically. If the last character (ignoring text line delimiters and
spaces) of the currently read record in the buffer is a back slash (*\’), the next record
will be appended to the buffer to form a single record. The buffer will always be NULL
terminated.

3.8.3 Parameters

e stream
Stream handle returned by the open of the file.
® recCno
Updated by this function to the record number of the currently read record.
e len
Size of the supplied buffer.
e buf

Buffer for the record to be read.

3.8.4 Return Value

If the end of the stream is encountered during processing then NULL is returned, other-
wise a pointer to the buffer is returned.

Code Magus Limited 11 CML00076-01

3.9 cmdname_write_file () 3 API REFERENCE

3.9 cmdname write file()

3.9.1 Synopsis

int cmdname_write_file (cmdname_stream_t xstream,char xbuf);

3.9.2 Description

This function writes a text record to the output stream from the buffer buf. appending
the appropriate line delimiters.

3.9.3 Parameters

® stream
Stream handle returned by the open of the file.
e buf

Buffer for the writing.

3.9.4 Return Value

On success the number of bytes written is returned, otherwise -1 is returned and the
error message can be retrieved, using the function cmdname _error ().

Code Magus Limited 12 CML00076-01

A HEADER FILE CMDNAME . H

A

Header file cmdname . h

#ifndef CMDNAME_H
#define CMDNAME_H

/%

*

b T S S S S

b S . A . S S I S S L S S S S R S T T . S S S S S S S I

File cmdname.h

Code Magus Limited command name library. This library resolves a path and a
command file name into a fully qualified name and, validates the file (e.g.
it exists as a regular file) and allows the caller to read the contents of

the file.

Functions are supplied to resolve the FQN, open the file for reading, read

a record and close the file. Both a PATH and the file name must conform to

a pattern defined by this library.

Copyright (c) 2010 Code Magus Limited. All rights reserved.

SAuthor: janvlok $

S$SDate: 2014/11/05 12:10:56 $

$Id: cmdname.h,v 1.9 2014/11/05 12:10:56 janvlok Exp $
S$SName: $

SRevision: 1.9 $

SState: Exp $

$Log: cmdname.h,v $
Revision 1.9 2014/11/05 12:10:56 janvlok
Alow spaces in path name for windows

Revision 1.8 2012/03/19 14:27:33 Jjanvlok
Implemented write of a command file

Revision 1.7 2011/06/21 10:54:26 hayward

Allow consecutive / or \ in the file names when checking
against the regex as these are valid in normal unix and
windows file system processing and allows a user to not
worry about wether the final slash on a directory name
must or must not be supplied.

Revision 1.6 2010/12/22 11:16:43 hayward
Make '/’ or '\’ compulsory after the drive letter (c:) on Windows.

Revision 1.5 2010/12/07 10:16:44 janvlok
Prefixed IDENTIFIER - clashesh with callers

Revision 1.4 2010/12/03 10:28:45 hayward
Allow one or no suffix (including the dot).

Revision 1.3 2010/12/02 11:57:41 hayward
Improve documentation.

Revision 1.2 2010/11/30 17:09:35 Jjanvlok

Code Magus Limited 13 CML00076-01

A HEADER FILE CMDNAME . H

* Working on Windows

*

* Revision 1.1.1.1 2010/11/30 14:56:42 janvlok
* Take on
*
*/
static char xcvs_cmdname_h =
"$Id: cmdname.h,v 1.9 2014/11/05 12:10:56 janvlok Exp $";

#ifdef __ _cplusplus
extern "C"

{

#endif /* C++ =/

/* Defines and constants:

*/
#define CMDPATH "CODEMAGUS_COMMAND_PATH"

/* Regular expressions for path and file name validation::

* Unix PATH “/N(\([A-Za-z] [A-Za-z0-9_]1x\) /\2\) *x$

*x Win Path “[A-Za-z]: [/NIN(\([A-Za-z] [A-Za-z0-9_]1x\) [/\]\?\) =S

* File name "\ ([A-Za-z] [A-Za-z0-9_]1+\)\.\ ([A-Za—-z] [A-Za-z0-9_1%*\)$
*/

#define CM_IDENTIFIER "[A-Za-z] [A-Za—-z0-9_]*"
#ifdef WIN32
#define CM_PIDENTIFIER " [A-Za-z] [A-Za—-z0-9_ 1"

#define PREGEX ""[A-Za-z]1:[/\\1*\\ (\\ (" CM_PIDENTIFIER "\\) [/\\]*\\)=*$"
#else

#define PREGEX ""/*\\ (\\ (" CM_IDENTIFIER "\\)/*\\)x$"

#endif

#define FNREGEX "“\\ (" CM_IDENTIFIER "\\)\\ (\\.\\ (" CM_IDENTIFIER "\\)\\)\\2$"

/* Structures:

*/
typedef struct cmdname_stream cmdname_stream_t; /* command file stream =*/

/* Exposed functions:

*/

/+ Function cmdname_error () will return a NULL terminated string describing
* the last error message encountered by any call to the library.

*/
char *cmdname_error (void) ;
/+ Function cmdname_open () initialises the cmdname instance and validates the

* path information that is used for resolving the fully qualified command
* file names.

Code Magus Limited 14 CML00076-01

A HEADER FILE CMDNAME . H

b S S S S RS S

~

Default path information for the command files may be specified in the
environment variable CODEMAGUS_COMMAND_PATH. The parameter path, if not
NULL takes precedence over the value of the environment variable. It is an
error if both the environment variable and the path parameter are empty.
Multiple paths may be specified, delimited by ’":’ (’;’ for Windows) .

Note the paths must be absolute, and can not be relative.

On success zero 1s returned, otherwise -1 is returned and the error
message can be retrieved, using the function cmdname_error ().

int cmdname_open (char xpath);

/%

*

*/

void

b S S R S S

char

% % o X ok X X%

Function cmdname_close () frees all resources used by the cmdname library.
There is no return value from this function.

cmdname_close (void) ;

Function cmdname_resolve () returns the validated fully qualified file name
for the requested file name. The file is searched for in the 1list of paths
supplied on the cmdname_open () function starting with the first one and
working down the list. Validation of the fully qualified name ensures that
the file exists as a regular file.

Note the file name must not include the leading directory components.

On error NULL is returned and the error message can be retrieved, using
the function cmdname_error().

*cmdname_resolve (char xfname);

Function cmdname_open_file() initially calls cmdname_resolve () to resolve
the fully qualified command file name and then opens the command file,
returning a cmdname_stream_t structure which is to be used for reading and
closing the command file using the relevant functions.

Note the file name must not include the leading directory components.

On error NULL is returned and the error message can be retrieved, using
the function cmdname_error ().

cmdname_stream_t xcmdname_open_file (char *fname);

/

ok ok X X X X X %

Function cmdname_open_output () resolves the supplied file name by using the
first path in the 1list of paths supplied on the cmdname_open () function and
then opens the file for writing

Returns a cmdname_stream_t structure which is to be used for writing and
closing the command file using the relevant functions.

Note the file name must not include the leading directory components.

On error NULL is returned and the error message can be retrieved, using

the function cmdname_error ().

cmdname_stream_t *cmdname_open_output (char xfname);

Code Magus Limited 15 CML00076-01

A HEADER FILE CMDNAME . H

Function cmdname_close_file() closes the stream indicated by the stream
handle supplied and frees all resources associated with the stream object.
On success zero is returned, otherwise -1 is returned and the error

* message can be retrieved, using the function cmdname_error ().

*/

int cmdname_close_file (cmdname_stream_t +*stream);

o S TR . S S e S S

Function cmdname_read_file () reads the next text record from the input
stream into the buffer ’"buf’ for a maximum of ’"len’ bytes.

If the end of the stream is encountered during processing then the function
returns NULL. ’recno’ is set to the record number of the currently read
record.

The text line delimiters (\n and/or \r) are stripped from the end of the
buffer 'buf’ and if this results in an empty buffer it will be ignored and
the next record is processed automatically.

If the last character (ignoring text line delimiters and spaces) of the
currently read record in ’"buf’ is a back slash (’\’), the next record will
be appended to the buffer ’"buf’ to form a single record.

The buffer "buf’ will always be NULL terminated.

char *cmdname_read_file (cmdname_stream_t =*stream, int *recno, int len,

/ *

char «buf);

Function cmdname_write_file() writes a text record to the output
stream from the buffer ’"buf’. Note the appropiate line delimeters will

+ be appended to the buffer before writing.

On success zero 1is returned, otherwise -1 is returned and the error

* message can be retrieved, using the function cmdname_error ().

*/

int cmdname_write_file (cmdname_stream t *stream,char xbuf);

#ifdef ___cplusplus

}

#endif /x C++ %/

#endif /» CMDNAME_H =/

Code Magus Limited 16 CML00076-01

	1 Introduction
	2 Command File Validation
	2.1 Path Information Validation
	2.1.1 Path Information
	2.1.2 Directory Names

	2.2 Command File Name Validation

	3 API Reference
	3.1 cmdname_error()
	3.1.1 Synopsis
	3.1.2 Description
	3.1.3 Parameters
	3.1.4 Return Value

	3.2 cmdname_open()
	3.2.1 Synopsis
	3.2.2 Description
	3.2.3 Parameters
	3.2.4 Return Value

	3.3 cmdname_close()
	3.3.1 Synopsis
	3.3.2 Description
	3.3.3 Parameters
	3.3.4 Return Value

	3.4 cmdname_resolve()
	3.4.1 Synopsis
	3.4.2 Description
	3.4.3 Parameters
	3.4.4 Return Value

	3.5 cmdname_open_file()
	3.5.1 Synopsis
	3.5.2 Description
	3.5.3 Parameters
	3.5.4 Return Value

	3.6 cmdname_open_output()
	3.6.1 Synopsis
	3.6.2 Description
	3.6.3 Parameters
	3.6.4 Return Value

	3.7 cmdname_close_file()
	3.7.1 Synopsis
	3.7.2 Description
	3.7.3 Parameters
	3.7.4 Return Value

	3.8 cmdname_read_file()
	3.8.1 Synopsis
	3.8.2 Description
	3.8.3 Parameters
	3.8.4 Return Value

	3.9 cmdname_write_file()
	3.9.1 Synopsis
	3.9.2 Description
	3.9.3 Parameters
	3.9.4 Return Value

	A Header file cmdname.h

